Регуляция деятельности сердца. Характеристика и механизмы влияний симпатических и парасимпатических нервов на деятельность сердца. Возрастные особенности тонуса ядер блуждающих нервов. Вегетативная регуляция сердечной деятельности Раздражение парасимпатич

Регуляция деятельности сердца. Характеристика и механизмы влияний симпатических и парасимпатических нервов на деятельность сердца. Возрастные особенности тонуса ядер блуждающих нервов. Вегетативная регуляция сердечной деятельности Раздражение парасимпатич

02.05.2020

Нажмите для увеличения

В данной статье рассмотрим, что такое симпатическая и парасимпатическая нервная система, как они работают, в чём их отличия. Ранее мы уже рассматривали тему , а также . Автономная нервная система, как известно, состоит из нервных клеток и отростков, благодаря которым идёт регуляция и управление внутренними органами. Вегетативная система делится на периферическую и центральную. Если центральная отвечает за работу внутренних органов, без какого-либо деления на противоположные части, то периферическая как раз делиться на симпатическую и парасимпатическую.

Структуры этих отделов присутствуют в каждом внутреннем органе человека и несмотря на противоположные функции, работают одновременно. Однако в разный момент времени, тот или иной отдел оказывается главнее. Благодаря им, мы можем приспосабливаться к разным климатическим условиям и прочим изменениям во внешней среде. Вегетативная система выполняет очень важную роль, она регулирует психическую и физическую деятельность, а также поддерживает гомеостаз (постоянство внутренней среды). Если вы отдыхаете, вегетативная система задействует парасимпатический и количество сердечных сокращений уменьшается. Если вы начинаете бегать и испытывать большие физические нагрузки, включается симпатический отдел, ускоряя тем самым работу сердца и кровообращение в теле.

И это только маленький срез деятельности, который осуществляет висцеральная нервная система. Она же регулирует рост волос, сужение и расширение зрачков, работу того или иного органа, отвечает за психологический баланс личности и многое другое. Всё это происходит без нашего сознательного участия, из-за чего на первый взгляд кажется сложным в лечении.

Симпатический отдел нервной системы

Среди людей, которые незнакомы с работой нервной системы, существует мнение, что она едина и неделима. Однако в реальности всё обстоит иначе. Так, симпатический отдел, который в свою очередь принадлежит периферическому, а периферический относится к вегетативной части нервной системы, снабжает организм необходимыми питательными веществами. Благодаря его работе, окислительные процессы протекают достаточно быстро, при необходимости ускоряется работа сердца, организм получает должный уровень кислорода, улучшается дыхание.

Нажмите для увеличения

Интересно, что симпатический отдел также делится на периферический и центральный. Если центральный является неотъемлемой частью работы спинного мозга, то периферическая часть симпатического имеет множество ветвей и нервных узлов, которые соединяются. Спинномозговой центр расположился в боковых рогах поясничного и грудного сегмента. Волокна, в свою очередь, отходят от спинного мозга (1 и 2 грудного позвонка) и 2,3,4 поясничного. Это очень краткое описание того, где расположены отделы симпатической системы. Чаще всего СНС задействуется, когда человек попадает в стрессовую ситуацию.

Периферический отдел

Представить периферический отдел не так сложно. Он состоит из двух одинаковых стволов, которые расположились по обе стороны вдоль всего позвоночника. Они начинаются от основания черепа и заканчиваются у копчика, где сходятся в единый узел. Благодаря межузловым ветвям осуществляется соединение двух стволов. В итоге периферический отдел симпатической системы проходит через шейный, грудной и поясничный отдел, которые рассмотрим более детально.

  • Шейный отдел. Как известно, начинается от основания черепа и заканчивается на переходе в грудной (шейный 1 рёбра). Здесь наблюдается три симпатических узла, которые делятся на нижний, средний и верхний. Все они проходят за сонной артерией человека. Верхний узел расположился на уровне второго и третьего позвонка шейного отдела, имеет длину 20 мм, ширину 4 — 6 миллиметров. Средний найти гораздо сложнее, так как расположен на перекрёстках сонной артерии и щитовидной железы. Нижний узел имеет самую большую величину, иногда даже сливается со вторым грудным узлом.
  • Грудной отдел. В его состав входят до 12 узлов и в нём присутствует много соединительных ветвей. Они тянутся к аорте, межрёберным нервам, сердцу, лёгким, грудному протоку, пищеводу и к другим органам. Благодаря грудному отделу, человек иногда может ощущать органы.
  • Поясничный отдел состоит чаще всего из трёх узлов, а в некоторых случаях имеет 4. Он также имеет множество соединительных ветвей. Тазовый отдел соединяет два ствола и другие ветви воедино.

Парасимпатический отдел

Нажмите для увеличения

Этот отдел нервной системы начинает работать, когда человек старается расслабиться или находится в покое. Благодаря парасимпатической системе происходит понижение артериального давления, сосуды расслабляются, суживаются зрачки, сердечный ритм замедляется, расслабляются сфинктеры. Центр этого отдела расположен в спинном и головном мозге. Благодаря эфферентным волокнам расслабляются волосяные мышцы, задерживается выделение пота, расширяются сосуды. Стоит отметить, что в структуру парасимпатического входит интрамуральная нервная система, которая имеет несколько сплетений и расположена в пищеварительном тракте.

Парасимпатический отдел помогает восстановиться после больших нагрузок и выполняет следующие процессы:

  • Снижает артериальное давление;
  • Восстанавливает дыхание;
  • Расширяет сосуды головного мозга и половых органов;
  • Сужает зрачки;
  • Восстанавливает оптимальный уровень глюкозы;
  • Активизирует железы пищеварительной секреции;
  • Приводит в тонус гладкие мышцы внутренних органов;
  • Благодаря данному отделу происходит очищение: рвота, кашель, чиханье и прочие процессы.

Чтобы тело чувствовало себя комфортно и приспосабливалось под различные климатические условия, в разный период активируется симпатический и парасимпатический отделы вегетативной нервной системы. В принципе, они работают постоянно, однако, как уже говорилось выше, один из отделов всегда превалирует над другим. Оказавшись в жаре, организм старается охладиться и активно выделяет пот, когда нужно срочно согреться, потоотделение соответственно блокируется. Если вегетативная система работает правильно, человек не испытывает определённые трудности и даже не знает об их существовании, за исключением профессиональной необходимости или любознательности.

Так как тема сайта посвящена вегетососудистой дистонии, вам следует знать, что из-за психологических нарушений, автономная система испытывает сбои. Например, когда у человека произошла психологическая травма и он испытывает паническую атаку в замкнутом помещении, у него активируется симпатический или парасимпатический отдел. Это нормальная реакция организма на внешнюю угрозу. Вследствие этого, человек чувствует тошноту, головокружение и прочие симптомы, в зависимости от . Главное, что следует уяснить больному, что это только психологическое нарушение, а не физиологические отклонения, которые являются только следствием. Именно поэтому лечение медикаментами не является эффективным средством, они помогают только убрать симптомы. Для полноценного выздоровления нужна помощь психотерапевта.

Если в определённый момент времени активизируется симпатический отдел, происходит повышение артериального давления, зрачки расширяются, начинаются запоры, повышается тревожность. При действии парасимпатического происходит сужение зрачков, может произойти обморок, понижается артериальное давление, накапливается избыточная масса, появляется нерешительность. Сложнее всего больному, страдающему расстройством вегетативной нервной системы, когда у него наблюдается , так как в этот момент одновременно наблюдаются нарушения парасимпатического и симпатического отдела нервной системы.

В итоге, если вы страдаете расстройством вегетативной нервной системы, первое что следует сделать, это сдать многочисленные анализы, чтобы исключить физиологические патологии. Если ничего не будет выявлено, можно с уверенностью сказать, что вам нужна помощь психолога, который в короткие сроки избавит от недуга.

Орган Действие симпатической системы Действие парасимпатической системы
Глаз – зрачок Расширение Сужение
– цилиарные мышцы Расслабление, фиксация отдаленных предметов Сокращение, фиксация близко расположенных предметов
– мышца, расширяющая зрачок Сокращение
Слезные железы Возбуждение секреции
Артерии Сужение
Сердце Увеличение силы и ускорение сокращений Уменьшение силы и замедление сокращений
Бронхи Расширение Сужение
Пищеварительный тракт Ослабление моторики Усиление моторики
– сфинктеры Сокращение Расслабление
Слюнные железы Выделение вязкого секрета Выделение водянистого секрета
Поджелудочная железа Усиление секреции
Печень Высвобождение глюкозы
Желчные пути Расслабление Сокращение
Мочевой пузырь Расслабление Сокращение
– сфинктер Сокращение Расслабление

В симпатическом отделе центральный (вставочный) нейрон лежит в боковых рогах спинного мозга между VIII грудным и II–III поясничным сегментами (см. Атл.). Нейриты этих нейронов (преганглионарные волокна) выходят из мозга в составе переднего корешка и попадают в смешанный спинно-мозговой нерв, от которого вскоре отделяются в виде соединительной (белой) ветви, направляющейся к симпатическому стволу . Эффекторный нейрон лежит или в паравертебральных ганглиях симпатического ствола, или в ганглиях автономных нервных сплетений – сердечного, чревного, верхнего и нижнего брыжеечных, подчревного и др. Эти ганглии называют превертебральными, ввиду того, что они располагаются впереди позвоночного столба. Большинство аксонов оканчивается на эффекторных нейронах симпатического ствола (цепочки). Меньшая часть аксонов проходит через ганглий симпатической цепочки транзитом и доходит до нейрона превертебрального ганглия.



Схема общего плана вегетативной (автономной) нервной системы.

Симпатический ствол (truncus sympaticus) состоит из ганглиев, расположенных посегментно по сторонам позвоночника. Друг с другом эти ганглии соединяются горизонтальными и вертикальными межузловыми ветвями. В грудном, поясничном и крестцовом отделах ствола число ганглиев почти соответствует числу сегментов спинного мозга. В шейном отделе вследствие происшедшего слияния существуют только три узла. При этом нижний из них часто сливается с I грудным узлом в звездчатый узел (ganglion stellatum). Симпатические стволы сливаются внизу в общий непарный копчиковый узел. Постганглионарные волокна от симпатического ствола в виде серых соединительных ветвей входят в состав близлежащих спинно-мозговых нервов. Вместе с последними они достигают гладкой и поперечно-полосатой мускулатуры стенок тела. Вместе с ветвями черепных нервов (блуждающего и языко-глоточного) симпатические волокна подходят к гортани, глотке и пищеводу и входят в состав сплетений их стенки. Кроме того, от симпатического ствола начинаются и самостоятельные симпатические нервы. От шейных узлов отходит по одному сердечному нерву, которые входят в состав сердечного сплетения; от верхних грудных – постганглионарные волокна к бронхам и легким, аорте, сердцу и др. Органы головы получают симпатическую иннервацию от верхнего шейного узла – внутренний сонный нерв, который образует сплетение вокруг внутренней сонной артерии, и от нижнего шейного узла, образующего сплетение вокруг позвоночной артерии. Распространяясь с ветвями этих артерий, симпатические волокна иннервируют сосуды и оболочку мозга, железы головы, а внутри глаза – мышцу, расширяющую зрачок.

Некоторые преганглионарные волокна не оканчиваются на клетках узлов симпатического ствола. Одни из них, миновав эти узлы, образуют большой и малый чревные нервы, которые проходят через диафрагму в брюшную полость, где оканчиваются на клетках превертебральных узлов чревного сплетения. Другие преганглионарные волокна спускаются в малый таз и оканчиваются на нейронах ганглиев подчревного сплетения.

Чревное сплетение (plexus coeliacus) – самое большое в автономной нервной системе, расположено между надпочечниками и окружает начало чревного ствола и верхней брыжеечной артерии. В состав сплетения входят большие парные чревные ганглии и непарный – верхнебрыжеечный. Постганглионарные симпатические волокна, отходящие от клеток этих ганглиев, образуют вторичное сплетение вокруг ветвей аорты и по сосудам расходятся к органам брюшной полости. Волокна иннервируют надпочечники, половые железы и поджелудочную железу, почки, желудок, печень, селезенку, тонкий и толстый кишечник до нисходящей ободочной кишки.

Нижнебрыжеечное сплетение (plexus mesentericus inferior) лежит на аорте и, распространяясь по ветвям нижнебрыжеечной артерии, иннервирует нисходящую ободочную кишку, сигмовидную и верхнюю части прямой.

Подчревное сплетение (plexus hypogastricus) окружает конец брюшной аорты. Постганглионарные волокна сплетения, распространяясь по ветвям внутренней подвздошной артерии, иннервируют нижнюю часть прямой кишки, мочевой пузырь, семявыносящий проток, предстательную железу, матку, влагалище.

В парасимпатическом отделе центральный нейрон лежит в продолговатом мозгу, мосте или в среднем мозгу в составе вегетативных ядер черепных нервов, а также в крестцовом отделе спинного мозга. Нейриты клеток, расположенных в головном мозге, покидают его в составе глазодвигательного, лицевого, языкоглоточного и блуждающего нервов. Эффекторные парасимпатические нейроны образуют или околоорганные (экстрамуральные) ганглии, расположенные вблизи органов (ресничный, крылонебный, ушной, подъязычный и др.), или внутриорганные (интрамуральные) ганглии, лежащие в стенках полых (желудочно-кишечный тракт) или в толще паренхиматозных органов.

В спинном мозге парасимпатические нервные клетки расположены в области II–IV крестцового сегмента в составе парасимпатического крестцового ядра. Преганглионарные волокна проходят в составе вентральных корешков крестцовых нервов и соматического крестцового сплетения; отделившись от него, образуют тазовые внутренностные нервы (nn. splanchnici pelvini). Большинство их ветвей входит в состав подчревного сплетения и оканчивается на клетках интрамуральных ганглиев в стенках органов малого таза. Постганглионарные парасимпатические волокна иннервируют гладкие мышцы и железы нижней части кишечного тракта, мочевыделительные, внутренние и наружные половые органы.

В стенках этих органов залегают интрамуральные нервные сплетения.

Рис. Интрамуральное нервное сплетение (по Колосову)

В их состав входят ганглии или отдельные нейроны и многочисленные волокна (рис.), в том числе волокна симпатической нервной системы. Нейроны интрамуральных сплетений различаются по функции. Они могут быть эфферентными, рецепторными и ассоциативными и образовывать местные рефлекторные дуги. Благодаря этому становится возможным осуществление элементов регуляции функции данного органа без участия центральных структур. На местном уровне регулируются такие процессы, как активность гладкой мускулатуры, всасывающего и секреторного эпителия, локального кровотока и т.д. Это дало основание А.Д. Ноздрачеву выделить интрамуральные нервные сплетения в третий отдел автономной нервной системы – метасимпатическую нервную систему.

Главная масса парасимпатических волокон, выходящих из продолговатого мозга, покидает его в составе блуждающего нерва. Волокна начинаются от клеток его дорсального ядра, расположенного в треугольнике блуждающего нерва на дне ромбовидной ямки. Преганглионарные волокна распространяются на шее, в грудной и брюшной полостях тела (см. Атл.). Они оканчиваются в экстра- и интрамуральных ганглиях щитовидной, околощитовидной и вилочковой желез, в сердце, бронхах, легких, пищеводе, желудке, кишечном тракте до селезеночного изгиба, в поджелудочной железе, печени, почках. От нейронов этих ганглиев отходят постганглионарные волокна, которые иннервируют эти органы. Внутриорганные парасимпатические ганглии сердца отдают волокна в синусно-предсердный и предсердно-желудочковый узлы сердечной мышцы, которые ими и возбуждаются в первую очередь. В стенках пищеварительного тракта залегают два сплетения, узлы которых образованы эффекторными парасимпатическими клетками: межмышечное – между продольными и круговыми мышцами кишечника и подслизистое – в его подслизистом слое.

В продолговатом мозге скопление парасимпатических нейронов образует нижнее слюноотделительное ядро. Его преганглионарные волокна идут в составе языкоглоточного нерва и оканчиваются в ушном узле, расположенном под овальным отверстием клиновидной кости. Постганглионарные секреторные волокна этого узла подходят к околоушной слюнной железе и обеспечивают ее секреторную функцию. Они иннервируют также слизистую оболочку щек, губ, зева и корня языка.

В мосте лежит верхнее слюноотделительное ядро, преганглионарные волокна которого идут сначала в составе промежуточного нерва, затем часть их отделяется и по барабанной струне переходит в язычный нерв (ветвь нижнечелюстного нерва V пары), в составе которого достигает подъязычного и подчелюстного узла. Последний лежит между язычным нервом и подчелюстной слюнной железой. Постганглионарные секреторные волокна подчелюстного узла иннервируют подчелюстную и подъязычную слюнные железы. Другая часть парасимпатических волокон промежуточного нерва, отделяясь от него, достигает крылонебного узла, расположенного в одноименной ямке. Постганглионарные волокна узла иннервируют слезную железу, слизистые железы полостей рта и носа и верхнего отдела глотки.

Еще одно парасимпатическое ядро (добавочное ядро глазодвигательного нерва) находится на дне водопровода среднего мозга. Преганглионарные волокна его нейронов идут в составе глазодвигательного нерва к ресничному узлу в задней части глазницы, латеральнее зрительного нерва. Постганглионарные, эффекторные волокна иннервируют мышцу, суживающую зрачок, и ресничную мышцу глаза.

Оглавление темы "Механизмы регуляции деятельности сердца. Венозный возврат крови к сердцу. Центральное венозное давление (ЦВД). Параметры гемодинамики.":

2. Механизмы регуляции деятельности сердца. Адренергические механизмы регуляции сердца.
3. Холинергические механизмы регуляции сердца. Влияние ацетилхолина на сердце.
4. Рефлекторные влияния на сердце. Кардиальные рефлексы. Рефлекс Бейнбриджа. Рефлекс Генри-Гауэра. Рефлекс Данини-Ашнера.
5. Гуморальные (гормональные) влияния на сердце. Гормональная функция сердца.
6. Венозный возврат крови к сердцу. Величина венозной крови притекающей к сердцу. Факторы влияющие на венозный возврат.
7. Уменьшение венозного возврата. Увеличение венозного возврата крови к сердцу. Спланхническое сосудистое русло.
8. Центральное венозное давление (ЦВД). Величина центрального венозного давления (ЦВД). Регуляция цвд.
9. Параметры гемодинамики. Соотношение основных параметров системной гемодинамики.
10. Регуляция сердечного выброса. Изменение оцк. Компенсаторные реакции сосудистой системы.

Влияние симпатических нервов на сердце проявлется в виде положительного хронотропного и положительного инотропного эффекта. Сведения о наличии тонических влияний симпатической нервной системы на миокард основываются в основном на хронотропных эффектах.

Электрическая стимуляция волокон, отходящих от звездчатого ганглия, вызывает увеличение ритма сердца и силы сокращений миокарда (см. рис. 9.17). Под влиянием возбуждения симпатических нервов скорость медленной диастолической деполяризации повышается, снижается критический уровень деполяризации клеток водителей ритма синоатриального узла, уменьшается величина мембранного потенциала покоя. Подобные изменения увеличивают скорость возникновения потенциала действия в клетках водителей ритма сердца, повышают его возбудимость и проводимость. Эти изменения электрической активности связаны с тем, что выделяющийся из окончаний симпатических волокон медиатор норадреналин взаимодействует с B1-адренорецепторами поверхностной мембраны клеток, что приводит к повышению проницаемости мембран для ионов натрия и кальция, а также уменьшению проницаемости для ионов калия.

Рис. 9.17. Электрическое раздражение эфферентных нервов сердца

Ускорение медленной спонтанной диастолической деполяризации клеток водителей ритма, увеличение скорости проведения в предсердиях, атриовентрикулярном узле и желудочках приводит к улучшению синхронности возбуждения и сокращения мышечных волокон и к увеличению силы сокращения миокарда желудочков. Положительный инотропный эффект связан также с повышением проницаемости мембраны для ионов кальция. При увеличении входящего тока кальция возрастает степень электромеханического сопряжения, в результате чего увеличивается сократимость миокарда.

Менее изучено участие в регуляции сердечной деятельности интракардиальных ганглиозных нервных элементов. Известно, что они обеспечивают передачу возбуждения с волокон блуждающего нерва на клетки синоат-риального и атриовентрикулярного узлов, выполняя функцию парасимпатических ганглиев. Описаны инотропные, хронотропные и дромотропные эффекты, полученные при стимуляции этих образований в условиях эксперимента на изолированном сердце. Значение этих эффектов в естественных условиях остается неясным.

Б. Лаун и Р. Л. Верье

РЕФЕРАТ. Увеличение тонуса парасимпатической нервной системы, вызванное либо стимуляцией вагуса, либо прямым воздействием на мускариновые рецепторы, значительно уменьшает склонность миокарда нормальных и ишемизированных желудочков к развитию фибрилляций. Этот защитный эффект является результатом антагонистического взаимодействия реакций миокарда на повышение нервной и гуморальной активности, влияющих на порог возникновения фибрилляций желудочков: Эти механизмы функционируют как у бодрствующего, так и у анестезированного животного. Полученные результаты, несомненно, имеют большое значение для клинической практики.

ВВЕДЕНИЕ

Вопрос о влиянии парасимпатической нервной системы на возбудимость клеток миокарда желудочков постоянно подвергается переоценке. В настоящее время общепринято, что вагусная иннервация не распространяется на миокард желудочков. С точки зрения клинициста, очевидно, что хотя холинергическое воздействие может оказать влияние на тахикардию, тем не менее место приложения ацетилхолина расположено вне желудочков. С другой стороны, проведенные в последнее время исследования позволяют утверждать, что воздействие со стороны парасимпатической нервной системы может изменять электрические свойства миокарда желудочков . Как было показано несколькими группами исследователей, стимуляция вагуса существенно влияет на возбудимость клеток желудочка и их склонность к фибрилляции . Эти эффекты могут быть опосредованы наличием богатой холинергической иннервации специализированной проводящей системы сердца, которая была обнаружена как в сердце собаки, так и в сердце человека .

Нами было показано, что влияние вагуса на вероятность возникновения фибрилляций желудочков (ФЖ) зависит от фонового уровня тонуса симпатических нервов сердца . Это положение вытекает из ряда экспериментальных наблюдений. Например, влияние вагуса возрастает у торакотомированных животных, у которых проявляется повышенный симпатический тонус, а также во время стимуляции симпатических нервов и инъекции катехоламинов. Такое действие вагуса на склонность желудочков к фибрилляции устраняется при блокаде |3-ре^ цепторов.

До сих пор точно не установлено, способна ли парасимпатическая нервная система изменять склонность желудочков к фибрилляции, развивающейся во время острой ишемии миокарда. Kent и Epstein с.соавт показали, что стимуляция вагуса значительно увеличивает порог ФЖ и уменьшает склонность ишемизированного сердца собаки к фибрилляции. Согг в. Gillis с соавт. обнаружили, что наличие интактных вагусных нервов предупреждает развитие ФЖ во время перевязки левой передней нисходящей артерии сердца наркотизированной хлоралозой кошки, но не дает никаких преимуществ при перевязке правой коронарной артерии. Yoon с соавт. и James с соавт. не смогли выявить какое-либо влияние стимуляции вагуса на порог ФЖ во время окклюзии левой передней нисходящей коронарной артерии собаки. Согг с соавт. даже обнаружили, что стимуляция парасимпатической нервной системы скорее усиливает, чем ослабляет, аритмии, которые возникают при снятии лигатуры с артерии, сопровождаемой реперфузией ишемизироваиного миокарда.

К этому также относится нерешенная проблема, модулирует ли тоническая активность парасимпатической нервной системы электрическую устойчивость клеток желудо"чка животного, находящегося в ненаркотизированном состоянии. Данные, полученные на наркотизированных животных при стимуляции нервов или введения лекарств, представляют собой ценную информацию, однако такие подходы в какой-то мере артефактны, и результаты требуют подтверждения на ненаркотизированном интактном организме. До последнего времени исследования животных в бодрствующем состоянии с такой целью не проводились в связи с отсутствием подходящих биологических моделий для оценки склонности миокарда к ФЖ. Однако эта трудность была преодолена, когда в "качестве надежного показателя склонности сердца к ФЖ использовали порог повторных экстравозбуждений, что позволило в результате отказаться от необходимости вызывать ФЖ и проводить сопутствующие реанимационные процедуры .

Задачи настоящего исследования заключались в следующем: 1) изучить влияние стимуляции вагуса и прямой активации метахолииом мускариновых рецепторов на склонность сердца к ФЖ во время острой ишемии миокарда и при репер-фузии, 2) определить, изменяет ли тоническая активность парасимпатической нервной системы склонность желудочков к фибрилляции при ненаркотизированном состоянии животного, и 3) оценить, имеют ли полученные на животных данные-какое-либо отношение к клиническим задачам.

МАТЕРИАЛ И МЕТОДЫ

Исследования на наркотизированных животных

Общие процедуры

Исследования были выполнены на 54 здоровых беспородных собаках массой от 9 до 25 кг. Не менее чем за 5 дней до-исследования под общим пентобарбитуратным наркозом проводили вскрытие грудной клетки с левой стороны в четвертом" межреберном пространстве. После обнажения сердца вокруг левой передней нисходящей артерии на уровне ушка левого" предсердия помещали баллончик, связанный с катетером и предназначенный для окклюзии. Катетер выводили под кожей наружу на затылке.

В день исследования собак наркотизировали с помощью а-хлорало"зы 100 мг/кг внутривенно. Искусственное дыхание поддерживали через эндотрахеальную трубку, соединенную с насосом Harvard, подающим смесь комнатного воздуха со 100% кислородом.Подачу кислорода в смеси осуществляли таким образом, чтобы артериальное рО2, находилось между 125 и 225 мм рт. ст. рН артериальной крови поддерживали в диапазоне от 7,30 до 7,55. Артериальное давление в брюшной аорте изменяли с помощью катетера, введенного через бедренную артерию и присоединенного к датчику давления Statham P23Db. Электрограмму (ЭГ) правого желудочка регистрировали с помощью монополярного внутриполостного отведения.

Исследование сердца

В течение всего эксперимента при помощи стимуляции правого желудочка поддерживали постоянный ритм сердца. Для поддержания искусственного ритма и нанесения тестирующих стимулов использовали биполярный катетер (Medtronic №5819), введенный через правую яремную вену и помещенный под флюороскопическим контролем в районе верхушки правого желудочка. Поддержание искусственного ритма достигалось "стимулами, амплитуда которых на 50-100% была выше порога, межстимуляциотаный интервал составлял от 333 до 300 мс, что соответствует частотам возбуждения желудочка от 180 до 200 в минуту.

Порог фибрилляции желудочков определяли с помощью одиночного стимула длительностью 10 мс. Это определение состояло в следующем: электрическую диастолу исследовали с помощью импульса 4 мА с интервалом 10 мс, начиная от конца эффективного рефрактерного периода до завершения Г-волны. Затем величину тока увеличивали с шагом 2 мА и при такой величине стимула продолжали исследование диастолы в течение 3 с. Наименьшую интенсивность стимула, вызывающую ФЖ, принимали в качестве порога ФЖ.

Использовали следующий протокол эксперимента: полная окклюзия левой передней нисходящей коронарной артерии достигалась надуванием заранее имплантированного катетера с баллоном и продолжалась в течение 10 мин. Во время окклюзии порог ФЖ оценивали с минутным интервалом. Через 10 мин после начала окклюзии резко уменьшали давление в баллоне и снова определяли порог ФЖ. Осуществляли две окклюзии с экспериментальным исследованием и без него, разделенных интервалом по крайней мере 20 мин .

Дефибрилляцию производили обычно за 3 с с помощью импульса постоянного тока, получаемого при разряде конденштора с энергоемкостью 50-100 Вт"С от дефибриллятора.11 лупа. Эта реанимационная процедура существенно не влияет на стабильность порога ФЖ.

Стимуляция вагуса

Шейный вагосимпатический ствол перерезали с двух сторон на 2 см ниже места бифуркации сонной артерии. К дисталь-иым концам перерезанного нерва прикрепляли изолированные биполярные электроды. Раздражение нерва производили с помощью прямоугольных импульсов длительностью 5 мс и напряжением 3-15 В при частоте стимуляции 20 Гц. Амплитуду раздражающих импульсов подбирали таким образом, чтобы при независимом раздражении либо правого, либо левого ство-дов вагуса достигалась остановка сердца. Порог фибрилляции желудочков определяли до, во время и после двусторонней стимуляции вагуса. Частоту сердечного ритма во время определения порога ФЖ постоянно искусственно поддерживали на уровне 200 ударов в минуту.

Введение метахолина

Внутривенное введение мускаринового агониста - хлорида ацетил-(Б,Ь)-бета-метилхолина (J. Т. Baker Company) в физиологическом растворе осуществляли со скоростью 5 мкг/ (кг-мин), используя инфузионный насос «Harvard». Максимальный эффект на порог ФЖ достигался через 30 мин после начала введения; в этот момент начинали проведение всей последовательности тестирований с окклюзией коронарной артерии и реперфузией. Введение вещества продолжалось в течение всего исследования.

ИССЛЕДОВАНИЯ НА БОДРСТВУЮЩИХ ЖИВОТНЫХ

Исследования проводили на 18 взрослых беспородных собаках массой от 10 до 15 кг.

Для проведения обратимой холодовой блокады парасимпатической активности нервов сердца был разработан специальный метод. Для этого выделяли часть вагосимпатического ствола длиной 3-4 см и помещали его на шее в кожную трубку. Таким образом, по обе стороны шеи были созданы «вагусные петли», которые отделяли изолированные сегменты нервов от других шейных структур. Это позволяло поместить вокруг вагусных петель охлаждающие наконечники для того, чтобы произвести обратимую блокаду нервной активности.

Относительный вклад активности вагусных афферентов и эфферентов в эффект, производимый охлаждением, определяли путем сравнения результатов, полученных при охлаждении вагуса с селективной блокадой вагусных эфферентов при внут-ривенно-м введении атропина.

Исследование сердца:

Для изучения склонности сердца к ФЖ использовали метод определения порога повторных экстравозбуждений (ПЭ) как описано ранее . Вкратце, порог склонности к ФЖ оценивался следующим образом: при поддержании постоянной частоты сердечного ритма 220 ударов в минуту сканирование повторным стимулом для определения порога ПЭ осуществляли при интенсивности стимула, равной двойному значению порога в середине диастолы, начиная с 30 мс после окончания рефрактерного периода. Тестирующий стимул подавали с каждым разом все раньше с шагом 5 мс, пока не подходили к концу рефрактерного периода. Если при этом не возникали ПЭ, амплитуду стимула увеличивали на 2 мА и повторяли процесс сканирования. Порог ПЭ считали равным минимальному значению тока, при котором ПЭ возникали в двух из каждых трех попыток. Порог ПЭ принимали в качестве порога уязвимости OK ФЖ.

Психологические условия

Для изучения влияния симпатических - парасимпатических взаимодействий в состоянии бодрствования собак помещали в стрессогенные условия, которые увеличивают поступление в сердце адренергических агониетов .

Стрессогенные условия заключались в закреплении собаки в станке Павлова, что вызывало ограничение двигательных возможностей. К сердечным катетерам подключали кабели для непрерывного наблюдения за ЭГ, подачи стимулов от искусственного водителя ритма и тестирующих стимулов. Отдельный удар электрическим током длительностью 5 мс осуществляли от дефибриллятора через медные пластины (80 см2), прикрепленные к грудной клетке. Собак оставляли в ремнях на 10 мин до нанесения электрического удара и еще на 10 мин после подачи тока. Процедуру повторяли 3 дня подряд. На 4-й день нанесения электрического удара исследовали влияние стрессогенных условий содержания на пороговый период уязвимости сердца к ФЖ до и во время блокады вагусных эфферентов атропином (0,05 мг/кг).

РЕЗУЛЬТАТЫ

15л и ниие стимуляции холинергических нервов на склонность сердца к ФЖ во время ишемии 1миокарда и при реперфузии

Изучение влияния стимуляции вагуса на порог ФЖ до и и<> время 10-минутного периода окклюзии передней левой нисходящей коронарной артерии с последующим внезапным иоостановлением кровотока было проведено на 24 собаках, наркотизированных хлоралозой. В отсутствие стимуляции вагуса окклюзия коронарной артерии и реперфузия приводили к значительному снижению порога фибрилляции (рис. 1), Снижение порога происходило в первые 2 мин после окклюзии и продолжалось от 5 до 7 мин. Затем порог быстро возвращался к значению, наблюдаемому в контроле до окклюзии. После восстановления проводимости коронарной артерии падение порога происходило почти мгновенно - за 20-30 с, но продолжалось недолго - менее 1 мин. Стимуляция вагуса значительно повышала порог ФЖ до окклюзии коронарной артерии (от 17±2 мА до З3.±4 мА, р<0,05) и уменьшала снижение порога, связанное с ишемией миокарда (18±4 мА по сравнению с 6±1 мА без стимуляции, р<С0,05). Во время реперфузии никакого защитного действия стимуляции вагуса не обнаружено (3±1 мА по сравнению с 5±1 мА без стимуляции).

Влияние селективной "Стимуляции мускариновых рецепторов с помощью метахолина на уязвимость сердца к ФЖ исследовали на 10 собаках. Введение метахолина приводило к результатам, качественно аналогичным тем, которые были получены при стимуляции вагуса. Так, метахолин повышал порог ФЖ до и во время окклюзии коронарной артерии, но был неэффективен при падении порога, связанном с реперфузи-ivii (рис. 2).

Влияние активности вагуса на склонность сердца

и спонтанным ФЖ при ишемии миокарда и реперфузии

Исследование влияния стимуляции вагуса на появление спонтанной ФЖ при окклюзии левой передней нисходящей коронарной артерии и артерии межжелудочковой перегородки было проведено дополнительно на 16 собаках. С помощью искусственной стимуляции желудочка поддерживали постоянную частоту сердечного ритма, равную 180 уд/мин. В отсутствие стимуляции вагуса окклюзия коронарной артерии вы-нвала ФЖ у 7 из 10 собак (70%), в то время как при одновременной стимуляции вагуса спонтанная ФЖ при окклюзии

Этот вопрос был изучен на 10 бодрствующих собаках, у которых оба вагуса были хронически выделены на шее в кожные трубки. Импульсацию в вагосимпатическом стволе обратимо блокировали при помощи охлаждающих наконечников, помещенных вокруг кожных вагусных петель. Холодовая блокада левой и правой вагусных петель увеличивала частоту сердечного ритма с 95+5 ударов в минуту до 115±7 и 172+ + 16 ударов в минуту соответственно. Когда обе вагусные петли были охлаждены одновременно, частота сердечного ритма увеличилась до 208+20 ударов в минуту. Все изменения частоты сердечного ритма были статистически достоверны с р< 0,01 (рис. 4).

Исследование влияния селективной блокады вагусных эф-! ферентов с помощью атропина на порог ПЭ было проведено на 8 бодрствующих собаках, содержавшихся в стрессогенных условиях, создаваемых с помощью иммобилизации в станке Павлова с нанесением чрезкожного удара электрическим током средней тяжести. До выключения воздействия на сердце вагусной импульсации порог ПЭ составлял 15+1 мА. При введении атропина (0,05 мг/кг) порог значительно снизился и составил 8±1 мА (снижение на 47%, р<0,0001) (рис. 5).

Этот эффект развивался независимо от изменений сердечного ритма, так как частота сердечного ритма поддерживалась постоянной на уровне 200 ударов в минуту в течение всего времени проведения электрического тестирования. Блокада вагуса с помощью атропина несущественно влияла на порог ПЭ у собак, содержавшихся в клетках с нестреосогенными условиями (22+2 мА и 19+3 мА до и при действии вещества соответственно).

ОБСУЖДЕНИЕ

В настоящее время накоплено значительное количество данных, указывающих на наличие прямого влияния парасимпатической нервной системы на хронотропные и изотропные свойства и возбудимость миокарда желудочков. Значительно меньше доказано, является ли величина этого влияния достаточной, чтобы объяснить некоторое защитное действие от возникновения ФЖ активности холинергических нервов в ише-мизированном сердце. Кроме того, мало известно о значении активности парасимпатических нервов в склонности сердца к ФЖ в двух различных условиях, которые, возможно, играют важную роль в возникновении внезапной смерти у человека а именно при внезапной окклюзии коронарной артерии и восстановлении ее проходимости с реперфузией ишемизиро-ванной области. До сих пор не определено значение тонической активности вагуса для уменьшения склонности к ФЖ. Еще один нерешенный вопрос состоит в том, может ли такая тоническая активность парасимпатической нервной системы влиять на склонность желудочков к фибрилляции при слабых психофизиологических стрессах. Настоящее исследование проливает некоторый свет на эти вопросы.

Эффект стимуляции вагуса во время ишемии миокарда и при реперфузии

Мы установили, что интенсивная парасимпатическая активность, возникающая при электрическом раздражении децентрализованного вагуса, или прямая стимуляция мускарино-вых рецепторов с помощью метахолина уменьшает склонность сердца собаки к ФЖ во время острой ишемии миокарда. Это также подтверждается наблюдениями, показывающими, что увеличение холинертичеокой активности значительно уменьшает падение порога ФЖ и склонность к спонтанным ФЖ во время окклюзии коронарной артерии. Эти эффекты не связаны с изменением сердечного ритма, так как его частоту поддерживали на постоянном уровне с помощью искусственного водителя ритма. Ни стимуляция вагуса, ни активация мускари-новых рецепторов не оказывали никакого положительного действия во время реперфузии.

Что же обусловливает различное влияние парасимпатической нервной системы на порог ФЖ во время ишемии миокарда и во время реперфузии? Предполагают, что склонность сердца к ФЖ при окклюзии "коронарной артерии и при реперфузии обусловлена различными механизмами . Вероятно, основную роль в увеличении склонности сердца к ФЖ во время острой окклюзии коронарной артерии играет рефлекторная активация симпатической нервной системы в сердце . Эту гипотезу подтверждает то, что изменение в поступлении адренергических веществ в сердце хорошо коррелирует с развитием во времени снижения порога ФЖ и появлением спонтанных ФЖ при окклюзии коронарной артерии . Если воздействие симпатических аминов на миокард уменьшено хирургическими или фармакологически-iin методами , то при этом достигается значительный защитный эффект против вызванных ишемией ФЖ. Таким образом, активность парасимпатической нервной системы уменьшает склонность сердца к ФЖ во время окклюзии коронарной артерии "благодаря противодействию профибриллятор-ному влиянию увеличенной адренергилеской активности. Такой положительный эффект увеличения холинергической активности может быть следствием ингибирования освобождения норадреналипа из симпатических нервных окончаний либо следствием уменьшения реакции рецепторов на воздействие катехоламинов .

Однако увеличение склонности миокарда к фибрилляции во время реперфузии, по-видимому, обусловлено неадренер-гическими факторами. Имеющиеся в настоящее время данные указывают на то, что это явление может быть связано продуктами метаболизма, вымываемыми в кровь при клеточной ишемии и некрозе . Было показано, что если кровоток в ишемическом миокарде восстанавливается постепенно или если перфузия производится раствором, лишенным кислорода, частота случаев появления желудочковых аритмий при восстановлении кровотока существенно снижается . Наблюдения, показывающие, что ФЖ возникает в течение нескольких секунд после внезапного восстановления коронарного артериального кровотока, также указывают на участие в этом процессе вымываемых из поврежденной зоны продуктов метаболизма . Предотвращение воздействия симпатических веществ на сердце с помощью хирургического или фармакологического вмешательства оказывается неэффективным для предупреждения ФЖ при восстановлении кровотока. А так как холинергические агонисты проявляют свое защитное влияние лишь через антиадренергическое действие, это может частично объяснить их неспособность уменьшить склонность миокарда к ФЖ во время реперфузии.

Сильное влияние активности парасимпатической нервной системы на частоту сердечного ритма может существенно изменить действие стимуляции вагуса на склонность желудочка к аритмиям. Например, Kerzner с соавт. показали, что стимуляция вагуса не полностью подавляет аритмии, возникающие при инфаркте миокарда. Напротив, эти исследователи обнаружили, что увеличение активности парасимпатической нервной системы или введение ацетилхолина неизменно вызывает желудочковую тахикардию во время спокойной без аритмий фазы инфаркта миокарда у собак. Такое аритмоген-ное действие полностью зависит от частоты сердечного ритма и может быть предупреждено с помощью искусственного водителя ритма.

Влияние тонической активности парасимпатической нервной системы на склонность желудочков к фибрилляции у животных, находящихся в бодрствующем состоянии

Результаты настоящего исследования указывают на то, ч:то в покое в состоянии бодрствования собаки ее сердце испытывает значительное тоническое влияние парасимпатической нервной системы. Холодовая блокада либо правого, либо левого вагуса приводит к существенным изменениям частоты сердечного ритма; однако эффект более выражен при блокаде правого вагуса (см. рис. 4). Это соответствует тому, что правый вагус оказывает преобладающее воздействие на синоат-риальный узел с некоторым наложением влияния от левого «агуса . Таким образом, максимальное увеличение частоты сердечного ритма возникает при одновременном охлаждении правого и левого вагусных нервов.

Установив, что тоническая активность парасимпатической нервной системы оказывает значительное влияние на пей-смекерную ткань, имеет смысл исследовать, можно ли выявить какое-либо влияние активности вагуса на электрические свойства желудочка. В этих экспериментах для селективной блокады активности вагусных эфферентов использовали атропин. Собак помещали в станок Павлова для иммобилизации с целью повышения симпатического влияния на сердце . Такая планировка эксперимента позволяла изучать влияние взаимодействия симпатических и парасимпатических реакций на склонность миокарда к ФЖ у бодрствующих животных. Нами установлено, что введение относительно низких доз атропина (0,05 мг/кг) приводит почти к 50% снижению порога фибрилляции желудочков. Это позволяет сделать вывод, что значительная тоническая активность вагуса у бодрствующего животного, содержащегося в стрессогенных условиях, ча-стично ослабляет профибрилляторное влияние эверсивных психофизиологических стимулов.

Кроме того, при использовании такой экспериментальной схемы защитное действие вагуса скорее всего обусловлено антагонистическим к адренергическому механизму действием. Это предположение подтверждается двумя типами наблюдений. Во-первых, наши предыдущие исследования показали, что склонность миокарда к фибрилляции в такой модели стрессогенных услоиий тесно коррелирует с уровнем циркулирующих в крови катехоламинов и что предупреждение симпатического влияния на сердце либо с помощью бета-блокады, либо при симпатэктомии существенно снижает вызванное стрессогенными условиями увеличение склонности к фибрилляции . Во-вторых, наблюдения De Silva с соавт. показывают, что увеличение тонического воздействия парасимпатической нервной системы при введении морфина собакам, находящимся в стрессогенных условиях иммобилизации, по-... вышает порог ФЖ до величины, наблюдаемой при отсутствии стрессорных воздействий. Когда активность вагусных эфферентов блокируется атропином, основная часть защитного действия морфина исчезает. Введение морфина в нестрессо-генных условиях не способно изменить порог ФЖ, видимо, потому, что в этих условиях адренергичеокое влияние на сердце слабое.

Эти данные указывают, что активация блуждающих нервов независимо от того, возникает ли она спонтанно или вызвана фармакологическим агентом, имеет защитное действие на миокард, снижая его склонность к ФЖ при стрессе. Это благотворное влияние скорее всего обусловлено антагонистическим влиянием повышенной активности парасимпатической нервной системы на эффект увеличения адренергической активности в сердце.

КЛИНИЧЕСКОЕ ПРИМЕНЕНИЕ

Более 40 лет назад было показано, что введение холинергического вещества - хлорида ацетил-бета-метилхолина, предупреждает желудочковые аритмии, вызванные у человека введением адреналина . В последнее время в ряде исследований сообщалось, что воздействия, аналогичные активации парасимпатической нервной системы, как, например, стимуляция каротидного синуса или введение ваготониче-ских агентов , снижают частоту желудочковых экстрасистол и предупреждают желудочковую тахикардию. Так как сердечные гликозиды увеличивают тоническое влияние блуждающего нерва на сердце, мы использовали это действие дигиталиса для подавления желудочковых аритмий . Однако в этой клинической области требуются дальнейшие исследования.

Это исследование было проведено Научно-исследовательской лабораторией сердечно-сосудистых заболеваний Гарвардской школы здравоохранения, Бостон, штат Массачусетс. Оно было также поддержано субсидией МН-21384 Национального института психического здоровья и субсидией HL-07776 Национального института сердца, легких и крови Национальных институтов здоровья, Бетезда, штат Мэриленд.

СПИСОК ЛИТЕРАТУРЫ

1. Kent К . М ., Smith Е . R., Redwood D. R. et al. Electrical stability of acu-

tely ischemic myocardium: influences of heart rate and vagal stimulation.-Circulation, 1973, 47: 291-298.

2. Kent K. M., Epstein S. E., Cooper T. et al. Cholinergic innervation of the

canine and human ventricula conducting system: anatomic and elec-trophysiologic correlation.-Circulation, 1974, 50: 948-955.

3. Kolman B. S-, Verrier R. L., Lown B. The effect of vagus nerve stimula-

tion upon vulnerability of the canine ventricular. Role of cympathetic-parasympathetic interactions.-Circulation, 1975, 52: 578-585.

4. Weiss Т ., Lattin G. M., Engelman K. Vagally mediated supression of pre-

mature ventricular contractions in man.-Am. Heart J., 1977, 89: 700- 707.

5. Waxman M. В ., Wald R. W. Termination of ventricular tacycardia by an

increase in cardiac vagal drive.-Criculation, 1977, 56: 385-391.

6. Kolman B. S., Verrier R. L., Lown B. Effect of vagus nerve stimulation

upon excitability of the canine ventricle: role of sympathetic-parasympa-thetic interactions.-Am. J. Cardiol., 1976, 37: 1041-1045.

7. loon M. S., Han J., Tse W. W. et al Effects of vagal stimulation, atropine,

and propranolol on fibrillation threshold of normal and ischemic ventricles.-Am. Heart J., 1977, 93: 60-65.

8. Lown В ., Verrier R. L. Neural activity and ventricular fibrillation.-New

Engl. J. Med., 1976, 294: 1165-1170.

9. Coor P. В ., Gillis R. A. Role of the vagus in the cardiovascular chenges

induced by coronary occlusion.- Circulation 1974, 49: 86-87.

10. Coor P. В ., Pearle D. L., Gillis R. A. Coronary occlusion site as a determi

nant of the cardiac rhythm effects of atropine and vagotomy.-Am. He

art J., 1976, 92: 741-749.

11. James R. G. G., Arnold J. M. O., Allen 1. D. et al. The effects of heart

rate, myocardial ischemia and vagal stimulation on the threshold for ventricular fibrillation.-Circulation, 1977, 55: 311-317.

12. Corr P. В ., Penkoske P. A., Sobel В . Е . Adrenergic influences on arrhyrh-

mias due to coronary occlusion and reperfusion.-Br. Heart J., 1978, 40 (suppl.), 62-70.

13. Matta R. J., Verrier R. L., Lown B. The repetitive extrasystole as an in

dex of vulberability to ventricular fibrillation.-Am. J. Physiol., 1976,

230: 1469-1473.

14. Lown В ., Verrier R. L., Corbalan R. Psychologic stress and threshold

for repetitive ventricular response.-Science, 1973, 182: 834-836.

15. Axelrod P. J., Verrier R. L., Lown B. Vulnerability to ventricular fibril-

lation during acute coronary arterial occlusion and release.-Am. J. Car-diol, 1976, 36: 776-782.

16. Corbalan R., Verrier R. L., Lown B. Differing mechanisms for ventricular

vulnerability during coronary artery occlusion and release.-Am. Heart

Т ., 1976, 92: 223-230.

17. DeSilva R. A., Verrier R. L., Lown B. Effect of psycholofic stress and

sedation with morphine sulfate on ventricular vulnerability.-Am. Heart J., 1978, 95: 197-203.

18. Liang В ., Verrier R. L, Lown B. et al. Correlation between circulation

catecholamme levels and ventricular vulnerability during psychologic stress in conscius dogs.-Proc. Soc. Exp. Biol. Med., 1979, 161:266- 269.

19. Malliani A., Schwartz P. L, Zanchetti A. A sympathetic reflex elicited by

experimental coronary occlusion.-Am. J. Physiol., 1969, 217: 703-709.

20. Kelliher G. ]., Widmer C, Roberts J. Influence of the adrenal medulla

on cardiac rhythm disturbances following acute coronary artery occlu

sion.-Recent. Adv. Stud. Cardiac. Struct. Metab.; 1975, 10: 387-400.

21. Harris A. S., Otero H., Bocage A. The induction of arrhythmias by sym

pathetic activity before and after occlusion of a coronary artery in the

canine heart.-J. Electrocardiol., 1971, 4: 34 -43.

22. Khan M. L, Hamilton J. Т ., Manning G. W. Protective effects of beta-

adrenoceptor blockade in experimental occlusion in conscious dogs.- Am. J. Cardiol., 1972, 30: 832-837.

23. Levy M. N., Blattberg B. Effect of vagal stimulation on the overflow of

norepinephrine into the coronary sinus during cardiac sympathetic ner

ve stimulation in the dog.-Circ. Res.. 1976, 38: 81-85.

24. Watanabe A. M., Besch H. R. Interaction between cyclic adenosine mo-

nophosphate and cyclic guanosine monophosphate in guinea pig ventri

cular myocardium.-Circ. Res., 1975, 37: 309-317.

25. Surawicz B. Ventricular fibrillation.-Am. J. Cardiol., 1971

26. Petropoulos P. C, Jaijne N. G. Cardiac function during perfusion of the

circumflex coronary artery with venous blood, low molecular weignt

dextran in Tyrode solution.-Am. Heart J., 1964, 68: 370-382.

27. Sewell W. M., Koth D. R., Huggins С . Е . Ventricular fibrillation in dogs

after sudden return of flow to the coronary artery.-Surgery, 1955, 38

1050-1053.

28. Bagdonas A. A., Stuckey J. H., Piera J. Effects of ischemia and hypoxia

on the specialized conducting system of the canine heart.-Am. Heart

J., 1961, 61: 206-218.

29. Danese С Pathogenesis of ventricular fibrillation in coronary occlusion.-

JAMA, 1962, 179: 52-53.

30. Kerzner J., Wolf U., Kosowsky B. D. et al. Ventricular ectopic rhythms

following vagal stimulation in dogs with acute myocardial infarction.-

Circulation, 1973, 47:44-50.

31. Haggins С . В ., Vainer S. F., Braunwald E. Parasympathetic control of

the heart.-Pharmacol. Rev., 1973, 25: 119-155.

32. Verrier R. L., Lown B. Effect of left stellectomy on enhanced cardiac

vulnerability induced by psychologic stress (abstr.).-Circulation, 1977,

56:111-80.

33. Nathanson M. H. Action of acetyl beta methyolcholin on ventricular

hrythm induced by adrenalin.-Proc. Soc. Exp. Biol. Med., 1935, 32: 1297-1299.

34. Cope R. L. Suppressive effect of carotid sinus on premature ventricular

beats in certain instances.-Am. J. Cardiol., 1959, 4: 314-320.

35. Lown В ., Levine S. A. The carotid sinus: clinical value of its stimulati

on.-Circulation, 1961, 23: 776-789.

36. Lorentzen D. Pacemaker-induced ventricular tacycardia: reversion to

normal sinus rhythm by carotid sinus massage.-JAMA, 1976, 235: 282-283.

37. Waxman M. В ., Downar E., Berman D. et al. Phenylephrine (Neosyne-

phrine R) terminated ventricular tachycardia.-Circulation, 1974, 50:

38. Weiss Т ., Lattin G. M., Engelman K. Vagally mediated suppression of

premature ventricular contractions in man.-Am. Heart J., 1975, 89: 700-707.

39. Lown В ., Graboys Т . В ., Podrid P. J. et al. Effect of a digitalis drug on

ventricular premature beats (VPBs).-N. Engl. J. Med., 1977, 296: 301-306.

Оглавление темы "Возбудимость сердечной мышцы. Сердечный цикл и его фазовая структура. Тоны сердца. Иннервация сердца.":
1. Возбудимость сердечной мышцы. Потенциал действия миокарда. Сокращение миокарда.
2. Возбуждение миокарда. Сокращение миокарда. Сопряжение возбуждения и сокращения миокарда.
3. Сердечный цикл и его фазовая структура. Систола. Диастола. Фаза асинхронного сокращения. Фаза изометрического сокращения.
4. Диастолический период желудочков сердца. Период расслабления. Период наполнения. Преднагрузка сердца. Закон Франка-Старлинга.
5. Деятельность сердца. Кардиограмма. Механокардиограмма. Электрокардиограмма (ЭКГ). Электроды экг.
6. Тоны сердца. Первый (систолический) тон сердца. Второй (диастолический) сердечный тон. Фонокардиограмма.
7. Сфигмография. Флебография. Анакрота. Катакрота. Флебограмма.
8. Сердечный выброс. Регуляция сердечного цикла. Миогенные механизмы регуляции деятельности сердца. Эффект Франка - Старлинга.
9. Иннервация сердца. Хронотропный эффект. Дромотропный эффект. Инотропный эффект. Батмотропный эффект.

Результатом стимуляции этих нервов является отрицательный хронотропный эффект сердца (рис. 9.17), на фоне которого проявляются также отрицательные и дромотропный инотропный эффекты . Существуют постоянные тонические влияния на сердце со стороны бульбарных ядер блуждающего нерва: при его двусторонней перерезке частота сердцебиений возрастает 1,5-2,5 раза. При длительном сильном раздражении влияние блуждающих нервов на сердце постепенно ослабевает или прекращается, что получило название «эффекта ускользания» сердца из-под влияния блуждающего нерва.

Различные отделы сердца по-разному реагируют на возбуждение парасимпатических нервов . Так, холинергические влияния на предсердия вызывают значительное угнетение автоматии клеток синусного узла и спонтанно возбудимой ткани предсердий. Сократимость рабочего миокарда предсердий в ответ на стимуляцию блуждающего нерва снижается. Рефрактерный период предсердий при этом также уменьшается в результате значительного укорочения длительности потенциала действия предсердных кардиомиоцитов. С другой стороны, рефрактерность кардиомиоцитов желудочков под влиянием блуждающего нерва, напротив, значительно возрастает, а отрицательный парасимпатический инотропный эффект на желудочки выражен в меньшей степени, чем на предсердия.

Рис. 9.17. Электрическое раздражение эфферентных нервов сердца . Вверху - уменьшение частоты сокращений при раздражении блуждающего нерва; внизу-увеличение частоты и силы сокращений при раздражении симпатического нерва. Стрелками отмечены начало и конец раздражения.

Электрическая стимуляция блуждающего нерва вызывает урежение или прекращение сердечной деятельности вследствие торможения автоматической функции водителей ритма синоатриального узла. Выраженность этого эффекта зависит от силы и частоты . По мере увеличения силы раздражения отмечается переход от небольшого замедления синусного ритма до полной остановки сердца.

Отрицательный хронотропный эффект раздражения блуждающего нерва связан с угнетением (замедлением) генерации импульсов в водителе ритма сердца синусного узла. Поскольку при раздражении блуждающего нерва в его окончаниях выделяется медиатор - ацетилхолин , при его взаимодействии с мускариночувствительными рецепторами сердца повышается проницаемость поверхностной мембраны клеток водителей ритма для ионов калия. Вследствие этого возникает гиперполяризация мембраны, которая замедляет (подавляет) развитие медленной спонтанной диастолической деполяризации, и поэтому мембранный потенциал позже достигает критического уровня. Это приводит к урежению ритма сокращений сердца.

При сильных раздражениях блуждающего нерва диастолическая деполяризация подавляется, возникают гиперполяризация водителя ритма и полная остановка сердца. Развитие гиперполяризации в клетках водителей ритма снижает их возбудимость, затрудняет возникновение очередного автоматического потенциала действия и тем самым приводит к замедлению или даже остановке сердца. Стимуляция блуждающего нерва , усиливая выход калия из клетки, увеличивает мембранный потенциал, ускоряет процесс реполяризации и при достаточной силе раздражающего тока укорачивает длительность потенциала действия клеток водителя ритма.

При вагусных воздействиях имеет место уменьшение амплитуды и длительности потенциала действия кардиомиоцитов предсердия. Отрицательный инотропный эффект связан с тем, что уменьшенный по амплитуде и укороченный потенциал действия не способен возбудить достаточное количество кардиомиоцитов. Кроме того, вызванное ацетилхолином повышение калиевой проводимости противодействует потенциалзависимому входящему току кальция и проникновению его ионов внутрь кардиомиоцита. Холинергический медиатор ацетилхолин может также угнетать АТФ-азную активность миозина и, таким образом, уменьшать величину сократимости кардиомиоцитов. Возбуждение блуждающего нерва приводит к повышению порога раздражения предсердий, подавлению автоматии и замедлению проводимости атриовентрикулярного узла. Указанное замедление проводимости при холинергических влияниях может вызвать частичную или полную атриовентрикулярную блокаду.

Учебное видео иннервации сердца (нервов сердца)

При проблемах с просмотром скачайте видео со страницы

© 2024 yanaorgo.ru - Сайт о массаже. В здоровом теле, здоровый дух