Особенности строения лимфатических капилляров. В зависимости от механизма уничтожения антигена различают клеточный иммунитет и гуморальный иммунитет Лимфатические капилляры

Особенности строения лимфатических капилляров. В зависимости от механизма уничтожения антигена различают клеточный иммунитет и гуморальный иммунитет Лимфатические капилляры

05.04.2020

Лимфатические капилляры являются начальным звеном лимфатической системы. Они имеются во всех органах и тканях человека, кроме головного и спинного мозга, их оболочек, глазного яблока, внутреннего уха, эпителия кожи и слизистых оболочек, ткани селезенки, костного мозга и плаценты.

Диаметр лимфатических капилляров 0,01-0,02 мм. Стенка капилляра состоит из одного слоя эндотелиальныхь клеток, которые особыми выростами – филаментами крепятся к расположенным рядом тканям. Лимфатические капилляры, соединяясь друг с другом, образуют лимфокапиллярные сети в органах и тканях.

Стенка капилляров обладает избирательной способностью к различным веществам. Повышение лимфообразования происходит под действием некоторых веществ, получивших название лимфогенных (пептоны, гистамин, экстракты из пиявок).

Лимфатические капилляры высокопроницаемы для многих клеток и веществ. Так, эритроциты, лимфоциты, хиломикроны, макромолекулы легко проникают в лимфатические капилляры, поэтому лимфа выполняет не только транспортные, но и защитные функции.

Лимфатические сосуды

Лимфатические сосуды образуются при слиянии лимфатических капилляров.

Стенки лимфатических сосудов состоят из трех слоев. Внутренний слой состоит из клеток эндотелиоцитов. Средний слой состоит из клеток гладкой мышечной мускулатуры (мышечный слой). Наружный слой лимфатических сосудов состоит из соединительнотканной оболочки.

Лимфатические сосуды имеют клапаны, наличие которых дает лимфососудам четкообразный вид. Назначение клапанов – пропускать лимфу только в одном направлении – от периферии к центру. В зависимости от диаметра лимфатического сосуда расстояние клапанов друг от друга – от 2 мм до 15 мм.

Лимфатические сосуды из внутренних органов, мышц выходят, как правило, с кровеносными сосудами – это так называемые глубокие лимфатические сосуды. Поверхностные лимфатические сосуды располагаются рядом с подкожными венами. В подвижных местах (около суставов) лимфатические сосуды раздваиваются и соединяются вновь после сустава.

Лимфатические сосуды, соединяясь между собой, образуют сети лимфатических сосудов. В стенках крупных лимфатических сосудов имеются мелкие кровеносные сосуды, питающие кровью эти стенки, а также есть и нервные окончания.

Лимфатические узлы

По лимфатическим сосудам лимфа от органов и тканей тела направляется к лимфатическим узлам. Лимфатические узлы выполняют функцию фильтра и играют большую роль в иммунной защите организма.

Лимфатические узлы располагаются около крупных кровеносных сосудов, чаще венозных, обычно группами от нескольких узлов до десяти и более. В организме человека выделяют около 150 групп лимфатических узлов. У различных видов животных количество узлов варьирует: 190 у свиньи, до 8000 у лошади

Группы лимфатических узлов залегают поверхностно – под кожным слоем (паховые, подмышечные, шейные узлы и др.) и во внутренностных полостях организма – в брюшной, грудной, тазовой полостях, около мышц.

Лимфатический узел имеет розовато-серый цвет, округлую форму. Размеры лимфоузла от 0,5 мм до 22 мм в длину. Масса всех лимфоузлов у взрослого человека – 500-1000 г. Снаружи лимфатический узел покрыт капсулой. Внутри его содержится лимфоидная ткань и система сообщающихся друг с другом каналов – лимфоидных синусов, по которым лимфа течет через лимфатический узел.

К лимфатическому сосуду подходят 2-4 лимфатических сосуда, а выходит из него 1-2 сосуда. На своем пути от каждого органа лимфа проходит не менее, чем через один лимфатический узел. Лимфатические сосуды имеют кровоснабжение через мелкие кровеносные сосуды, к лимфоузлам подходят и проникают в них нервные окончания.

Роль лимфатических узлов. Каждый лимфатический узел контролирует определенный участок лимфатической системы. При попадании в организм микробов или трансплантации чужеродной ткани ближайший к этому месту лимфатический узел уже через несколько часов начинает увеличиваться в размерах, лимфоидные клетки его интенсивно делятся и образуют огромное количество малых лимфоцитов. Функция малых лимфоцитов - организация специфической самозащиты организма (иммунной реакции) от чужеродных агентов - антигенов. Малые лимфоциты образуются из стволовых клеток костного мозга. В лимфатических узлах различают долгоживущие тимусзависимые (Т-лимфоциты), которые прошли стадии развития в тимусе, и недолговечные В-лимфоциты, которые не были в тимусе, а прямо из костного мозга попали в лимфатические узлы.

Макрофаги первыми атакуют попавшие в организм антигены. Т-лимфоциты вырабатывают особое вещество (гуморальный фактор), которое уменьшает подвижность макрофагов, благодаря чему антигены концентрируются в лимфатических узлах. Там на них обрушивается вся мощь иммунной защиты. Один тип Т-лимфоцитов (клетки-убийцы) непосредственно уничтожает антигены, другой тип Т-лимфодитов (клетки памяти) после первого внедрения чужеродного агента сохраняет память о нем на всю жизнь и обеспечивают более активную реакцию на вторичное вторжение. Т-лимфоциты вместе с макрофагами «преподносят» антиген в таком виде, что это стимулирует В-лимфоциты к превращению сначала в большие лимфоциты, а затем в плазматические клетки, производящие антитела против данного антигена.

Таким образом, лимфатические узлы играют важную роль как в инфекционном, так и трансплантационном иммунитете.

Возрастные особенности лимфатических узлов у человека:

Лимфатические узлы расположены по ходу лимфатических сосудов и вместе с ними составляют лимфатическую систему. Они являются органами лимфопоэза и образования антител. Лимфатические узлы, которые оказываются первыми на пути лимфатических сосудов, несущие лимфу из данной области тела (региона) или органа, считаются регионарными.

У новорожденных детей капсула лимфатического узла еще очень нежная и тонкая, поэтому их трудно прощупать под кожей. К годовалому возрасту лимфатический узел уже можно прощупать почти у всех здоровых детей.

У большинства детей в возрасте 3-6 лет имеется некоторая гиперплазия периферического лимфоидного аппарата. Маслов М.С. указывал, что «лимфатизм» присущ, в основном, всему детскому населению, и что в той или иной степени все дети до 7 лет являются лимфатиками. Воронцов И.М считает, что у детей раннего возраста могут быть различные виды лимфатизма, возникающего от перекармливания или из-за повторных вирусных инфекций. Однако при всех ситуациях истинный лимфатический диатез необходимо дифференцировать от акселерационного, алиментарного и иммунодефицитного лимфатизма. Распространенность лимфатического диатеза у детей дошкольного возраста составляет 3-6%, а по другим данным достигает 13%.

Считается, что в норме у здоровых детей обычно прощупывается не более трех групп лимфатических узлов. Не должны пальпироваться подбородочные, надключичные, подключичные, грудные, локтевые, подколенные лимфатические узлы. Однако до настоящего времени окончательно не разработаны критерии нормы и патологии лимфатических узлов в детском возрасте и принятые в нашей стране и широко рекомендуемое в отечественной литературе сравнение лимфатических узлов с размером зерна, гороха, вишней, фасолью, лесным или грецким орехом нерационально, т.к. дает несопоставимые результаты. По данным литературы, у большинства детей шейные лимфаденопатии имеют инфекционно-воспалительную природу (92,5%), в 4,5% случаев – опухолевую, в 2,7% - инфекционно-аллергическую. Причем наиболее частым возбудителем неспецифических лимфаденитов у детей является золотистый стафилококк.

Возрастные изменения инволютивного плана (уменьшение количества лимфоидной ткани, разрастание жировой) в лимфатических узлах наблюдаются уже в юношеском возрасте. Разрастается соединительная ткань в строме и паренхиме узлов, появляются группы жировых клеток. Одновременно с этим уменьшается количество лимфатических узлов в регионарных группах. Многие лимфатические узлы небольших размеров полностью замещаются соединительной тканью и перестают существовать как органы иммунной системы. Рядом лежащие лимфатические узлы срастаются друг с другом и образуют более крупные узлы сегментарной или лентовидной формы.

В любом случае наличие у ребенка пальпируемых лимфатических узлов, размеры которых превышают возрастные нормы, является показанием к уточнению их природы. На современном этапе с этой целью возможно использование технических средств, в первую очередь, эхографии, т.е. метода обследования с помощью ультразвуковых волн.

Лимфатические узлы перестраиваются в течение всей жизни, в том числе у пожилых и старых людей. От юношеского возраста (17-21 год) до пожилого (60-75 лет) количество их уменьшается в 1,5 - 2 раза. По мере увеличения возраста человека в узлах, преимущественно соматических, происходят утолщение капсулы и трабекул, увеличение соединительной ткани, замещение паренхимы жировой тканью. Такие узлы теряют свои естественные строение и. свойства, запустевают и становятся непроходимыми для лимфы. Число лимфатических узлов уменьшается и за счет срастания двух узлов, лежащих рядом, в более крупный лимфатический узел. С возрастом меняется и форма узлов. В молодом возрасте преобладают узлы округлой и овальной формы, у пожилых и "старых людей они как бы вытягиваются в длину. Таким образом, у пожилых и старых людей количество функционирующих лимфатических узлов уменьшается за счет их атрофии и срастания друг с другом, в результате чего у лиц старшего: возраста преобладают крупные лимфатические узлы.

Лимфатическая система - сеть сосудов, возвращающих интерстициальную жидкость в кровь (рис. 23–21Б).

Рис . 23 21 . ЛИМФАТИЧЕСКАЯ СИСТЕМА . А . Строение на уровне микроциркуляторного русла . Б . Анатомия лимфатической системы . В . Лимфатический капилляр . 1 - кровеносный капилляр; 2 - лимфатический капилляр; 3 - лимфатические узлы; 4 - лимфатические клапаны, 5 - прекапиллярная артериола, 6 - мышечное волокно, 7 - нерв, 8 - венула, 9 - эндотелий, 10 - клапаны, 11 - поддерживающие филаменты.Г . Сосуды микроциркуляторного русла скелетной мышцы . При расширении артериолы (а) прилежащие к ней лимфатические капилляры сдавливаются между ней и мышечными волокнами (вверху), при сужении артериолы (б) лимфатические капилляры, напротив, расширяются (внизу). В скелетных мышцах кровеносные капилляры значительно меньше лимфатических.

· Почти все ткани имеют лимфатические каналы, дренирующие излишки жидкости из интерстициальных пространств. Исключения - ЦНС, эндомизий мышц, кости и самый поверхностный слой кожи. Но даже эти ткани содержат мельчайшие интерстициальные каналы (прелимфатические капилляры), через которые протекает интерстициальная жидкость. Эта жидкость (лимфа) поступает в лимфатические сосуды или в спинномозговую жидкость (в мозге) и затем обратно в кровь.

· Лимфа переносит белки, которые не могут адсорбироваться из интерстициальных пространств в кровеносные капилляры. Возвращение белков в кровь из интерстициальных пространств - крайне важная функция. Жидкость выходит из артериальных капилляров и возвращается либо в венозный, либо в тонкостенный лимфатический капилляр. Клапаны лимфатических сосудов способствуют тому, что лимфа всегда течёт в одном направлении.

à Вся лимфа из нижней части туловища собирается в грудной проток и изливается в венозную систему в области угла внутренней яремной вены и подключичной вены.

à Лимфа из левой половины головы, левой руки и части грудной клетки поступает в грудной проток перед его впадением в венозное русло.

à Лимфа из правой половины шеи и головы, правой руки и правой половины грудной клетки собирается в правый лимфатический проток.

· Лимфатические узлы расположены по всему телу и в тех местах, где объединяются лимфатические сосуды: в паховой области, в подмышечных ямках и в области шеи, а также рядом с ответвлениями аорты и нижней полой вены. Они выполняют три основные функции: фильтруют и разрушают инородные вещества, производят лимфоидные иммунокомпетентные клетки, синтезируют АТ.

Образование лимфы

Объём жидкости, возвращающийся в кровоток посредством лимфатической системы, составляет от 2 до 3 л в день. Вещества с высокой молекулярной массой (прежде всего белки) не могут абсорбироваться из тканей другим путём, кроме лимфатических капилляров, имеющих специальное строение.

· Состав лимфы . Поскольку 2/3 лимфы поступает из печени, где содержание белка превышает 6 г на 100 мл, и кишечника, с содержанием белка выше 4 г на 100 мл, то в грудном протоке концентрация белка обычно составляет 3–5 г на 100 мл. После приёма жирной пищи содержание жиров в лимфе грудного протока может возрастать до 2%. Через стенку лимфатических капилляров в лимфу могут проникать бактерии, которые разрушаются и удаляются, проходя через лимфатические узлы.

· Поступление интерстициальной жидкости в лимфатические капилляры (рис. 23–21В,Г). Эндотелиальные клетки лимфатических капилляров фиксированы к окружающей соединительной ткани так называемыми поддерживающими филаментами. В местах контакта эндотелиальных клеток конец одной эндотелиальной клетки перекрывает кромку другой клетки. Перекрывающиеся края клеток образуют подобие клапанов, выступающих внутрь лимфатического капилляра. Эти клапаны и регулируют поступление интерстициальной жидкости в просвет лимфатических капилляров.

При накоплении интерстициальной жидкости поддерживающие филаменты выполняют функцию тросов и открывают входные клапаны. Поскольку давление интерстициальной жидкости в этом случае оказывается выше, чем давление в лимфатическом капилляре, интерстициальная жидкость вместе с клетками крови, вышедшими из микроциркуляторного русла, направляется в лимфатические капилляры. Это движение происходит до тех пор, пока лимфатический капилляр не заполнится. При этом давление в нём возрастает и в тот момент, когда оно превысит давление интерстициальной жидкости, входные клапаны закрываются.

· Ультрафильтрация из лимфатических капилляров . Стенка лимфатического капилляра - полупроницаемая мембрана, поэтому часть воды возвращается в интерстициальную жидкость путём ультрафильтрации. Коллоидно-осмотическое давление жидкости в лимфатическом капилляре и интерстициальной жидкости одинаково, но гидростатическое давление в лимфатическом капилляре превышает таковое интерстициальной жидкости, что приводит к ультрафильтрации жидкости и концентрированию лимфы. В результате этих процессов концентрация белков в лимфе повышается примерно в 3 раза.

· Сдавление лимфатических капилляров . Движения мышц и органов приводят к сдавлению лимфатических капилляров. В скелетных мышцах лимфатические капилляры расположены в адвентиции прекапиллярных артериол (рис. 23–21Г). При расширении артериол лимфатические капилляры сдавливаются между ними и мышечными волокнами, при этом входные клапаны закрываются. При сужении артериол входные клапаны, напротив, открываются, и интерстициальная жидкость поступает в лимфатические капилляры.

Движение лимфы

· Лимфатические капилляры . Лимфоток в капиллярах минимальный, если давление интерстициальной жидкости отрицательное (например, составляет менее –6 мм рт.ст.). Увеличение давления выше 0 мм рт.ст. увеличивает лимфоток в 20 раз. Следовательно, любой фактор, повышающий давление интерстициальной жидкости, увеличивает также лимфоток. К факторам, повышающим интерстициальное давление, относят: Ú увеличение проницаемости кровеносных капилляров, Ú увеличение коллоидно-осмотического давления интерстициальной жидкости, Ú повышение давления в капиллярах, Ú уменьшение коллоидно-осмотического давления плазмы.

· Лимфангионы . Повышения интерстициального давления недостаточно, чтобы обеспечить лимфоток против сил гравитации. Пассивные механизмы оттока лимфы - пульсация артерий, влияющая на перемещение лимфы в глубоких лимфатических сосудах, сокращения скелетных мышц, движения диафрагмы - не могут обеспечить лимфоток в вертикальном положении тела. Указанную функцию активно обеспечивает лимфатический насос . Сегменты лимфатических сосудов, ограниченные клапанами и содержащие в стенке ГМК (лимфангионы) способны автоматически сокращаться. Каждый лимфангион функционирует как отдельный автоматический насос. Наполнение лимфангиона лимфой вызывает сокращение, и лимфа перекачивается через клапаны в следующий сегмент и так далее, вплоть до поступления лимфы в кровоток. В крупных лимфатических сосудах (например, в грудном протоке) лимфатический насос создаёт давление от 50 до 100 мм рт.ст.



Работа ГМК лимфангионов подчиняется закону Франка–Старлинга. При возрастании нагрузки на лимфатические пути (при этом увеличивается объём лимфы) усиливается растяжение стенок лимфангиона, что приводит к увеличению силы его сокращения, и в определённых пределах возрастает лимфоток.

· Грудные протоки . В состоянии покоя через грудной проток проходит до 100 мл лимфы в час, через правый лимфатический проток - около 20 мл. Ежедневно в кровоток поступает 2–3 л лимфы.

Лимфатическая недостаточность . Если нагрузка на лимфатические пути или объём ультрафильтрата увеличиваются, то увеличивается и объём лимфы - включается так называемый механизм предохранительного клапана (активный механизм, направленный на предупреждение отёков). Однако объём лимфы может увеличиваться лишь до определённого предела, ограниченного транспортной ёмкостью лимфатических сосудов. Если объём ультрафильтрата, образующегося за единицу времени, превышает транспортную ёмкость лимфатических сосудов, то резерв лимфатического насоса истощается и возникает лимфатическая недостаточность, проявляющаяся отёками. Любой фактор, препятствующий нормальной работе лимфангионов, снижает транспортную ёмкость лимфатических сосудов. Возможна комбинированная форма лимфатической недостаточности, когда чрезмерное накопление интерстициальной жидкости обусловлено не только увеличением объёма ультрафильтрата, но и снижением транспортной ёмкости вследствие патологии самих лимфатических сосудов.

Вполне естественно, что рассмотрение морфологии лимфатической системы начинается с определения лимфатического капилляра, который представляет собой исходный и самый главный элемент лимфатической системы. Анатомически лимфатический капилляр, подобно кровеносному капилляру, имеет вид микротрубочки, или волосного канальца, имеющего очень тонкую стенку, состоящую из одного слоя эндотелиальных клеток (смотрите рисунок ниже). Одни капилляры под световым микроскопом выглядят как слепо начинающиеся трубки, напоминающие пальцы перчатки (смотрите рисунок ниже - а), другие начинаются петлей (смотрите рисунок ниже - б), третьи могут начинаться по типу разветвленного корня.

а - слепо начинающийся лимфатический капилляр фиброзной капсулы почки. Импрегнация нитратом серебра. X 300 (препарат Н. В. Куприяновой); б - петлевидная форма лимфатического капилляра плевры человека. Импрегнация нитратом серебра. X 300 (препарат Т. И. Семеновой).

В. Д. Арутюнов и соавт. (1976) описали шарообразную форму начальных лимфатических капилляров. Сходные образования известны в литературе под названием луковицеобразных или бульбозных . Классическим примером пальцевидного капилляра служит центральный лимфатический синус кишечной ворсинки. В литературе есть указания на то, что лимфатический капилляр существует лишь как элемент сети, а пальцеобразные слепо начинающиеся трубочки следует отнести к выростам лимфатических капилляров или сосудов (смотрите рисунок ниже).

Миокард крысы. Сканограмма коррозионного препарата.

Такие выросты встречаются по ходу компонентов капиллярной сети, свидетельствуя об их реакции на неадекватное воздействие; ими начинается и новообразование лимфатических капилляров, которые включаются в капиллярную сеть. Крайне затруднительно Дифференцировать феномен избыточного роста стенки лимфатических сосудов и слепые выпячивания стенки как остатки редуцирующихся сосудов.

Многие авторы фиксируют на своих препаратах слепые пальцеобразные отростки капилляров, напоминающие слепые выпячивания стенки лимфатических сосудов. Их квалифицируют по-разному. Так, А. И. Свиридов (1966), считал их слепо начинающимися капиллярами. А. А. Сушко и Л. В. Чернышенко (1966), А. В. Борисов (1967) рассматривали их как растущие или вновь образующиеся капилляры. По нашему мнению, это постоянно существующая форма капилляров, представленная в лимфатическом русле многих органов наравне с петлями лимфатических капилляров. Это не отростки, не абортивные компоненты сети, не окончания, а именно начальные, или исходные, корни лимфатической системы.

«Микролимфология», В.В.Купирянов, Ю.И. Бородин


В настоящее время базальные мембраны выделены во многих органах. Возникла необходимость их морфофункционального определения и последующей классификации. Трудно допустить их полную однородность в различных тканевых структурах. К тому же еще неизвестны их генетическая обусловленность и функциональная детерминация. Мнения относительно происхождения базальных мембран чрезвычайно противоречивы. Возьмем для примера стенку капилляров. Имеется мнение, согласно которому базальная мембрана…



Многочисленные исследования, выполненные в последние годы с помощью электронной микроскопии, показали, что динамика структурных перестроек стенки лимфатических капилляров связана с процессом резорбции жидкости и макромолекул белка. В обеспечении этого процесса основная роль принадлежит межклеточным контактам и микропиноцитозным везикулам. Межклеточные контакты в стенке лимфатических капилляров представляют собой специализированные образования, которые возникают благодаря близкому противостоянию краев смежных…


К числу внутриклеточных структур, поддерживающих ту или иную форму эндотелиальных клеток лимфатических капилляров, относятся микротрубочки и цитоплазматические микрофиламенты (смотрите рисунок ниже). Микротрубочки (указаны одной стрелкой) и микрофиламенты (указаны двумя стрелками) в цитоплазме эндотелиалъной клетки лимфатического капилляра Фиброзная капсула почки собаки, х 10 000. Поскольку их ультраструктура описана достаточно подробно, следует остановиться лишь на некоторых фактах,…


Поверхность эндотелиальных клеток, обращенная к интерстицию, более гладкая, за исключением мест, где к плазмалемме фиксируются микрофибриллы. Эти пучки фибрилл, описанные в 30-х годах , расшифрованы с помощью электронного микроскопа [Шахламов В. А., 1971; Шахламов В. А., Цамерян А. П., 1972; Leak L., Burke J., 1968] под названием «якорных» или «стропных» филаментов.…


Концепция о роли стропных филаментов отличается новизной, хотя факт существования подобных связей у лимфатических капилляров был известен и ранее. Так, применение светового микроскопа позволило В. Pullinger и Florey Н. (1935) обнаружить ретикулиновые и коллагеновые волокна, от которых отходят отростки к тонким лимфатическим сосудам. Авторы предполагали, что при отеках (в связи с повышением давления в ткани)…


Следует подчеркнуть, что слепые начала лимфатических капилляров ориентированы в зонах максимальной фильтраций жидкости и белка - области венозных сегментов капилляров, посткапиллярных венул. Несомненно такое положение обеспечивает эффективное поступление содержимого интерстициального пространства в их просвет. Интенсивная резорбция жидкости из соединительно-тканного пространства поддерживается относительно большой площадью обмена лимфатических капилляров, которые погружены в интерстицнальный матрикс. Вопрос о начальных…


Пути выведения продуктов обмена и жидкостей из тканей и органов более сложны, чем пути доставки крови. Существование двух систем оттока, т. е. оттока лимфы и венозной крови, можно объяснить требованиями надежности обеспечения указанной функции. Понятно поэтому, что в каждом органе лимфатическое русло должно отражать конкретные морфологические и физиологические особенности этого органа. Как показал Д. А.…


Анатомо-физиологические особенности лимфатических капилляров в различных регионах, органах и тканях неизбежны, но слабо изучены. Д. А. Жданов (1966) привел ряд примеров зависимости корней лимфатической системы от функционального состояния органов. Сразу же обращают на себя внимание резкие колебания плотности лимфатических капилляров в различных тканях. Чем определяется степень их разрастания? В чем причины отсутствия лимфатических капилляров и…


Диаметр лимфатических капилляров в нормальных условиях колеблется в пределах 10-200 мкм. Он в несколько раз превосходит диаметр кровеносных капилляров (смотрите рисунок ниже), который не превышает 20 мкм. Слепо начинающийся лимфатический капилляр (указан двумя стрелками), диаметр которого превосходит диаметр кровеносного капилляра (указан одной стрелкой) Брюшина собаки. X 300. Величина диаметра предопределяет участие в составе стенки капилляра…


В целом вопрос о существовании у лимфатических капилляров базальной мембраны пока считается открытым. Крупный специалист в области лимфологии J. Casley-Smith (1977) полагает, что базальная мембрана не всегда хорошо развита. Можно думать, что есть регионарные, видовые и возрастные колебания в становлении и организации этого компонента капиллярной стенки. Существует концепция о перителии как особом чехле капилляров, построенном…


Диаметр лимфатических капилляров в нормальных условиях колеблется в пределах 10-200 мкм. Он в несколько раз превосходит диаметр кровеносных капилляров (смотрите рисунок ниже), который не превышает 20 мкм.

Слепо начинающийся лимфатический капилляр (указан двумя стрелками),
диаметр которого превосходит диаметр кровеносного капилляра (указан одной стрелкой)

Брюшина собаки. X 300.

Величина диаметра предопределяет участие в составе стенки капилляра нескольких эндотелиальных клеток, причем эти клетки, имеющие ромбовидную форму, в лимфатических капиллярах в 4 раза крупнее, чем в кровеносных капиллярах. После фиксации глутаровым альдегидом их цитоплазма выглядит, как правило, более электронно-светлой, чем цитоплазма эндотелиальных клеток кровеносных капилляров. Кроме того, в стенке лимфатических капилляров отсутствуют фенестры.

На ультратонких срезах, прошедших через стенку лимфатических капилляров, видны эндотелиоциты двух типов: один - уплощенные, распластанные, другие - более округлые, с выступающей в просвет капилляра ядросодержащей зоной (смотрите рисунок ниже).

М. cremaster крысы. ЯЭ - ядра эндотелиальных клеток; КФ - коллагеновые фибриллы; ПА - просвет артериолы; ПВ - просвет венулы; ПЛК- просвет лимфатического капилляра. X 5300 (препарат И. Д. Сенатовой).

Оба типа клеток содержат обычные клеточные органеллы: митохондрии, пластинчатый комплекс (аппарат Гольджи), гранулярную цитоплазматическую сеть. Кроме того, здесь обнаруживаются лизосомы, мультивезикулярные и остаточные тельца (смотрите рисунок ниже - а, б).

Лизосома (а) и остаточное тельце (б) в цитоплазме
эндотелиальных клеток лимфатических капилляров

Фиброзная капсула почки собаки. X 100000.

В эндотелиальных клетках лимфатических капилляров встречаются крупные вакуоли - так называемые симфизиосомы , которые образуются в результате слияния мелких гладкоконтурных везикул. Предполагают , что симфизиосомы могут выполнять функции лизосом. В них накапливаются иногда инородные частицы, в том числе небелкового характера, сохраняющиеся до 8 мес.

Наличие везикул, среди которых преобладают мелкие (до 50 нм), указывает на участие клеток в транспорте, а присутствие в цитоплазме лизосом и остальных телец свидетельствует о поглотительной и фагоцитарной функциях эндотелия лимфатических капилляров.

«Микролимфология», В.В.Купирянов, Ю.И. Бородин

  • Базальные мембраны

Лимфатическая система — система лимфатических капилляров, мелких и крупных лимфатических сосудов и находящихся по их ходу лимфатических узлов, обеспечивающая вместе с венами дренаж органов. Лимфатическая система является составной частью сосудистой и представляет как бы добавочное русло венозной системы, в тесной связи с которой она развивается и с которой имеет сходные черты строения (наличие клапанов, направление тока лимфы от тканей к сердцу).

Функция

    проведение лимфы от тканей в венозное русло (транспортная, резорбционная и дренажная функции)

    лимфоцитопоэтическая - образование лимфоидных элементов, участвующих в иммунологических реакциях,

    защитная - обезвреживание попадающих в организм инородных частиц, бактерий и т. п.

  • всасывание жиров оcуществляют лимфатические сосуды, отводящие лимфу от кишечника.

Физиология

Лимфатическая система состоит из:

1. Замкнутый конец лимфатического русла начинается сетью лимфокапиллярных сосудов , пронизывающих ткани органов в виде лимфокапиллярной сети.

Функции: 1) всасывание, резорбция из тканей коллоидных растворов белковых веществ, не всасывающихся в кровеносные капилляры; 2) дополнительный к венам дренаж тканей, т. е. всасывание воды и растворенных в ней кристаллоидов; 3) удаление из тканей в патологических условиях инородных частиц и т. п.

2. Лимфокапиллярные сосуды переходят во внутриорганные сплетения мелких лимфатических сосудов.

3. Последние выходят из органов в виде более крупных отводящих лимфатических сосудов , прерывающихся на своем дальнейшем пути лимфатическими узлами .

4. Крупные лимфатические сосуды вливаются в лимфатические стволы и далее в главные лимфатические протоки тела — правый и грудной лимфатические протоки, которые впадают в крупные вены шеи.

Лимфатические капилляры

Лимфатические капилляры являются начальным звеном лимфатической системы. Они образуют обширную сеть во всех органах и тканях, кроме головного и спинного мозга, мозговых оболочек, хрящей, плаценты, эпителиального слоя слизистых оболочек и кожи, глазного яблока, внутреннего уха, костного мозга и паренхимы селезенки. Диаметр лимфатических капилляров варьирует от 10 до 200 мкм. Соединяясь друг с другом, лимфатические капилляры формируют замкнутые однослойные сети в фасциях, брюшине, плевре, оболочках органов. В объемных и паренхиматозных органах (легких, почках, крупных железах, мышцах) внутриорганная лимфатическая сеть имеет объемное (трехмерное) строение. В слизистой оболочке тонкой кишки от сети в ворсинке отходят широкие, длинные лимфатические капилляры и лимфатические синусы. Стенки лимфатических капилляров образованы одним слоем эндотелиальных клеток, базальная мембрана отсутствует. Около коллагеновых волокон лимфатические капилляры фиксированы пучками тончайших соединительнотканных волоконец.

Лимфатические протоки

Из лимфатических сосудов образуются шесть коллекторных лимфатических протоков, сливающихся в два главных ствола — грудной проток и правый лимфатический проток . Грудной проток формируется при слиянии кишечного и двух поясничных стволов. Поясничные стволы собирают лимфу из нижних конечностей, таза, забрюшинного пространства, кишечные — из органов брюшной полости. Правый лимфатический проток (около 10-12 мм длиной) образуется из правого подключичного и яремного протоков и правого бронхомедиастинального протока; впадает в правый венозный угол.

Лимфа , находящаяся в лимфатических сосудах, представляет собой слегка мутноватую или прозрачную жидкость солоноватого вкуса, щелочной реакции (рН — 7,35-9,0), близкую по своему составу к плазме крови. Лимфа образуется в результате всасывания в лимфатические капилляры тканевой жидкости, которое происходит по межклеточным (через межэндотелиальные соединения) и чресклеточным (сквозь тела эндотелиальных клеток) путем, а также при фильтрации плазмы крови через стенки кровеносных капилляров. Образовавшаяся лимфа из лимфатических капилляров оттекает в лимфатические сосуды, проходит через лимфатические узлы, протоки и стволы и вливается в кровь в области нижних отделов шеи. Лимфа движется по капиллярам и сосудам под напором вновь образовавшейся лимфы, а также в результате сокращения мышечных элементов в стенках лимфатических сосудов. Току лимфы способствуют сократительная деятельность скелетных мышц при движении тела и гладкой мускулатуры, движение крови по венам и отрицательное давление, возникающее в грудной полости при дыхании.

Места развития лимфоцитов:

1. костный мозг и вилочковая железа;

2. лимфоидные образования в слизистых оболочках: а) одиночные лимфатические узелки,б) собранные в группы; в) образования лимфоидной ткани в форме миндалин;

3. скопления лимфоидной ткани в червеобразном отростке;

4. пульпа селезенки;

Лимфатические узлы

Лимфатические узлы расположены по ходу лимфатических сосудов и вместе с ними составляют лимфатическую систему. Они являются органами лимфопоэза и образования антител. Каждый лимфатический узел покрыт соединительнотканной капсулой, от которой внутрь узла отходят капсулярные трабекулы. На поверхности узла имеется вдавление — ворота узла. Через ворота проникают в узел артерии и нервы, выходят вены и выносящие лимфатические сосуды. От капсулы в области ворот отходят в паренхиму узла воротные (хиларные) трабекулы. Воротные и капсулярные трабекулы соединяются, придавая лимфатическому узлу дольчатое строение. С капсулой узла и трабекулами связана строма узла, образованная ретикулярной соединительной тканью, в петлях которой находятся клетки крови, главным образом лимфоциты. Между капсулой, трабекулой и паренхимой имеются щели — лимфатические синусы. По синусам течет лимфа, поступившая в лимфатический узел. Сквозь стенки синусод в паренхиму лимфатического узла проникают и там накапливаются инородные частицы, подвергающиеся воздействию лимфы. Каждый лимфатический узел обильно кровоснабжается, причем артерии проникают в него не только через ворота, но и через капсулу. Лимфатические узлы перестраиваются в течение всей жизни, в том числе у пожилых и старых людей. От юношеского возраста (17-21 год) до пожилого (60-75 лет) количество их уменьшается в 1,1/2-2 раза. С возрастом меняется и форма узлов. В молодом возрасте преобладают узлы округлой и овальной формы, у пожилых и старых людей они как бы вытягиваются в длину.



© 2024 yanaorgo.ru - Сайт о массаже. В здоровом теле, здоровый дух