Генноинженерные вакцины. Рекомбинантные генно-инженерные вакцины Живые вакцины получают

Генноинженерные вакцины. Рекомбинантные генно-инженерные вакцины Живые вакцины получают

В 70-х гг. нашего века успехи генетической клеточной инженерии дали возможность разработать новую технологию получения противовирусных вакцин, получивших название генно-инженерных вакцин. Необходимость таких разработок диктовалась следующими причинами: 1) недостатком природных источников сырья/подходящих животных; 2) невозможностью размножать вирус в классических объектах/культуры ткани и пр. Принцип создания генно-инженерных вакцин включает: а) выделение природных генов антигенов или их активных фрагментов; б) встройку этих генов в простые биологические объекты - бактерии, дрожжи; в) получение необходимого продукта в процессе культивирования биологического объекта - продуцента антигена. Геномы вирусов по сравнению с геномом клетки (прокариотической или эукариотической) ничтожно малы по размерам. Гены, кодирующие протективные белки, можно клонировать у ДНК -содержащих вирусов непосредственно, у РНК-содержащих вирусов - после обратной транскрипции их генома(для вирусов с непрерывным геномом) или даже отдельных генов (у вирусов с фрагментированным геномом). На первом этапе развития новой биотехнологии ученые занимались преимущественно клонированием вирусных генов, кодирующих синтез белков, несущих главные антигенные детерминанты. Вскоре были получены рекомбинантные бактериальные плазмиды, несущие гены или геномы вирусов гепатита В, гриппа, полимиолита. Следующим этапом явилось получение антигена. Вопрос оказался сложным, ибо экспрессии вирусных генов в прокариотной системе была ничтожной. Это можно объяснить тем, что вирусы в ходе эволюции приспособились к паразитированию в организме человека. Однако со временем были получены экспрессии антигенов. И одним из наиболее типичных примеров, показывающих необходимость создания генно-инженерных вакцины, является гепатит В. Проблема заключается в том, что до сих пор не найдены чувствительные к вирусу культуры клеток или животных. Поэтому разработка генно-инженерного метода получения вакцин стала необходимостью. Метод заключается в том, что геном клонируют в клетках Е. coli с использованием плазмидных и фаговых векторов. Бактерии, несущие рекомбинантные плазмиды, продуцируют белки, специфически реагирующие с антителами против самого вируса. В 1982 г. в США была получена первая экспериментальная вакцина против гепатита В. Для продукции вирусспецифических белков (антигенов) используют и эукариотические клетки (дрожжи, животных). Интенсивно ведутся работы по созданию и других генно-инженерных вакцин, в частности против гриппа, герпеса, ящура, клещевого энцефалита и других вирусных инфекций. Новейшим подходом в создании вирусных вакцин является включение генов, отвечающих за синтез вирусных протеинов, в геном другого вируса. Таким образом создаются рекомбинантные вирусы, обеспечивающие комбинированный иммунитет.

Вакцинацию можно охарактеризовать по-разному: геноцидом, уничтожением населения, широкомасштабным экспериментом над живыми детьми, манипуляцией массового сознания. В любом случае здравый взгляд на зазеркалье показывает, что здоровье и вакцины - вещи не совместимые.

РГИВ - новая продукция в профилактике инфекционных болезней. Примером такой вакцины является вакцина против гепатита В. Вооружившись методами генной инженерии, медико-биологи получили прямой доступ к геному. Теперь возможно встраивать гены, удалять их или удваивать.

Например, ген одного организма можно встроить в геном другого. Подобный перенос генетической информации возможен даже через «эволюционное расстояние, разделяющее человека и бактерию». Молекулу ДНК можно разрезать на отдельные фрагменты с помощью специфических ферментов и ввести эти фрагменты в другие клетки.

Стало возможным включать в бактериальные клетки гены других организмов, в том числе гены, ответственные за синтез белков. Таким способом в современных условиях получают значительное количество интерферона, инсулина и других биопрепаратов. Аналогичным путём получена вакцина против гепатита В - ген вируса гепатита встроен в клетку дрожжей.

Как и все новое, тем более генно-инженерное лекарственное средство, предназначенное для парентерального введения (у нас опять-таки массово и через три часа после рождения ребенка!), эта вакцина требует проведения продолжительных наблюдений - то есть, речь идет о тех же «широкомасштабных испытаниях... на детях».

Из многочисленных публикаций следует: «Наблюдения становятся более точными и ценными, если они проводятся в период массовых кампаний иммунизации. В таких кампаниях в течение короткого времени прививается большое количество детей. Появление в этот период группы определенных патологических синдромов свидетельствует, как правило, об их причинной связи с вакцинацией». В понятие определённого патологического синдрома может входить как кратковременная лихорадка и кашель, так и полный или частичный паралич или отставание в умственном развитии.

Кроме вакцины «Энджерикс против гепатита В» «такой же безопасной и эффективной» заявлена противогепатитная южнокорейская вакцина, активно навязываемая нашей стране. Генно-инженерные вакцины - «профилактическое» средство со многими неизвестными. Наша страна не в состоянии проверить безопасность этой продукции из-за отсутствия соответствующих экспериментальных баз. Мы не можем ни качественно проконтролировать докупаемые вакцины, ни создать условия для приготовления безопасных собственных вакцин. Проверка рекомбинантных лекарственных средств - высокотехнологический эксперимент, требующий огромных затрат. Увы, мы в этом отношении очень далеки от уровня передовых лабораторий мира и практически совершенно не ориентированы на контроль подобной продукции. В связи с этим в России (и Украине) регистрируется все то, что не прошло клинических испытаний у зарубежных производителей этих вакцин, или испытания прошли, но в недостаточном объеме... Отсюда лавинообразное количество вакцин от разных доброхотов, «стремящихся помочь России» и везущих нам не завтрашние и не сегодняшние технологии, а позавчерашние - «по сути, отходы от их современного производства, или те вакцины, которые необходимо исследовать в «широкомассштабных экспериментах на детях». Чаще это именуют «широкомасштабными наблюдениями», а задача одна - опыты на наших детях!

КАЗАЛОСЬ БЫ, БЕССМЫСЛЕННО И БЕЗНРАВСТВЕННО ДОКАЗЫВАТЬ ОПАСНОСТЬ СОЛЕЙ РТУТИ ДЛЯ ГРУДНЫХ ДЕТЕЙ, КОГДА ШИРОКО ИЗВЕСТНЫ ПОСЛЕДСТВИЯ ИХ ВОЗДЕЙСТВИЯ НА ОРГАНИЗМ ВЗРОСЛОГО ЧЕЛОВЕКА.

Напомним, что соли ртути более опасны, нежели сама ртуть. Однако отечественная вакцина АКДС, содержащая 100 мкг/мл мертиолята (ртутьорганической соли) и 500 мкг/мл формалина (сильнейшего мутагена и аллергена) применяется около 40 лет. К аллергенным свойствам формалина относятся: отёк Квинке, крапивница, ринопатая (хронический насморк), астматические бронхиты, бронхиальна астма, аллергические гастриты, холециститы, колиты, эритемы и трещины кожи и др. Всё это отмечается педиатрами более 40 лет, но статистика запрятана за железными дверями от широкой общественности. Тысячи детей страдают десятки лет, но чиновникам от медицины до этого дела нет.

Нет никаких данных о действии мертиодята и формалина, НИКОГДА И НИКТО НЕ ИЗУЧАЛ ЭТОГО КОНГЛОМЕРАТА на детенышах животных в плане непосредственных реакций и отдаленных последствий; скажем, для подростков. Фирмы ПРЕДУПРЕЖДАЮТ, следовательно, не несут никакой ответственности за действия наших вакцинаторов и контролеров! Таким образом, в нашей стране продолжаются многолетние, «широкомасштабные испытания» на наших детях с развитием разнообразных патологических синдромов. С каждым днём в эту адскую мясорубку бросают всё новых и новых безвинных младенцев (тех, кто избежал аборта), пополняя ряды детей-инвалидов и их несчастных родителей, не подозревающих об истинной причине страданий их чад. Тщательно подготовленная и проводимая «кампания по запугиванию населения» эпидемиями дифтерии, туберкулёза, гриппа с одной стороны и запретительные меры в отношении детских садов и школ не оставляют никаких шансов родителям.

НЕЛЬЗЯ ДОПУСКАТЬ, ЧТОБЫ ТОЛЬКО ФИРМЫ И МАЛОКОМПЕТЕНТНЫЕ ВАКЦИНАТОРЫ КОРПОРАТИВНО РЕШАЛИ СУДЬБУ НАШИХ ДЕТЕЙ.

Поскольку больше нигде в мире не проводится вакцинация БЦЖ новорожденным, проводимые в России и Украине мероприятия являются экспериментом, потому что «проводят оценку эффективности сочетанной иммунизации новорождённых против гепатита В и против туберкулёза на фоне массовой иммунизации». Недопустимая нагрузка на организм новорождённых! Этот эксперимент, «широкомасштабная вакцинация на предмет выявления патологических синдромов» проводится в масштабе государства, предоставившего для таких наблюдений неограниченное число собственных детей... не поставив в известность об этом родителей! К тому же «патологические синдромы» могут проявиться и год спустя, и пять лет и значительно позже... Существуют данные, что эта вакцина спустя 15 -20 лет может вызвать цирроз печени.

Какие же компоненты входят в состав ЭНДЖЕРИКС (вакцина против гепатита В)?

1. Основа препарата- «модифицированные» пекарские дрожжи, «широко применяемые в производстве хлеба и пива». Здесь явно пропущено слово «генетически-модифицированные» - по-видимому из-за того, что это сочетание уже изрядно напугало население на примере сои, картофеля, кукурузы, ввозимых из-за границы. Генетически-модифицированный продукт сочетает в себе свойства входящих в него ингредиентов, приводящих при применении к непредсказуемым последствиям. Что упрятали генные инженеры в дрожжевую клетку кроме вируса гепатита В? Можно подселить туда ген вируса СПИДа или ген любого онкозаболевания.

2. Гидроокись алюминия. Здесь следует подчеркнуть, что многие десятилетия не рекомендуется (!) использовать этот адъювант для вакцинации детей.

3. Тиомеросаль - это мертиолят (ртутьорганическая соль), о пагубном влиянии которого на центральную нервную систему известно давно, относится к разряду пестицидов.

4. Полисорбент (не расшифровывается).

http://www.ligis.ru/librari/3379.htm

Рекомбинантная технология совершила прорыв в создании принципиально новых вакцин. Принцип создания генноинженерных вакцин заключается в том, что в геном живых аттенуированных вирусов, бактерий, дрожжей или клеток эукариотов встраивается ген, кодирующий образование протективного антигена того возбудителя, против которого будет направлена вакцина.

В качестве вакцин используются сами модифицированные микроорганизмы или протективный антиген, образующийся при их культивировании в условиях in vitro. В первом случае иммунный ответ направлен не только против продуктов встроенного гена, но и на носитель вектора.

Примером рекомбинантной вакцины, состоящей из готового антигена, является вакцина против гепатита В, а примером векторных вакцин, антигены которых образуются in vivo, является антирабическая вакцина. Она получена на основе осповакцины и нашла широкое применение в профилактике бешенства среди диких животных с помощью приманки, содержащей эту вакцину.

Для создания векторных живых вирусных вакцин используют аттенуированный ДНК-содержащий вирус, в геном которого встраивается необходимый предварительно клонированный ген. Вирус, носитель вектора, активно размножается, а продукт встроенного гена обеспечивает формирование иммунитета. Вектор может содержать несколько встроенных генов, отвечающих за экспрессию соответствующих чужеродных антигенов. Экспериментальные векторные вакцины на основе вируса осповакцины получены к ветряной оспе, гриппу А, гепатиту А и В, малярии, простому герпесу. К сожалению, вакцины испытаны преимущественно на животных, которые устойчивы к большинству из этих инфекций.

Рекомбинантный продукт не всегда имеет ту же структуру, что и естественный антиген. Иммуногенность такого продукта может быть сниженной. Естественные вирусные антигены в клетках эукариотов подвергаются гликозилированию, что повышает иммуногенность таких антигенов. В бактериях гликозилирование отсугствует или оно происходит не так, как в клетках высшихэукариотов. У низших эукариотов (грибов) посттрансляционные процессы занимают среднее положение.

Разработчик генноинженерной вакцины должен представить данные о стабильности системы экспрессии антигена во время хранения рабочего банка клеток. При наличии изменений в посевной культуре, которые могут сопровождаться перестройкой, делением или вставками нуклеотидов, необходимо определить нуклеотидную последовательность, исследовать пептидные карты и последовательность концевых аминокислот генноинженерного продукта. Использование рестриктазного картирования в сочетании с изучением маркеров, кодируемых вектором (чувствительность к антибиотикам и пр.), могут указать о появлении изменений в структуре вектора.

Принципы создания бактериальных рекомбинантных вакцин аналогичны. Важным этапом является клонирование генов и получение мутантных генов, кодирующих иммуногенные, но не токсические формы антигена. Клонированы гены для дифтерийного и столбнячного токсинов, токсина синегнойной палочки, сибиреязвенного, холерного, коклюшного, шигеллезного токсинов. Предпринимаются попытки получить рекомбинантные вакцины против гонореи и менингококковой инфекции.

В качестве носителя бактериального вектора используется БЦЖ, Vibrio cholerae, Escherichia coli, Salmonella tythimurium. Кишечная группа возбудителей перспективна для разработки энтеральных вакцин. Живые рекомбинантные вакцины, введенные через рот, имеют короткий период жизни, но способны за этот период вызвать стойкий иммунитет. Возможно создание многокомпонентных вакцин для одномоментной профилактики против нескольких диарейных инфекций. Бактериальные векторные вакцины в отличие от вирусных можно контролировать с помощью антибиотиков. Прошли экспериментальную проверку оральные вакцины против гепатита В и малярии.

В перспективе предполагается использовать векторы, в которые встроены не только гены, контролирующие синтез протективных антигенов, но и гены, кодирующие различные медиаторы иммунного ответа. Получены рекомбинантные штаммы БЦЖ, которые секретируют уинтерферон, интерлейкины, гранупоцит-стимулирующий фактор. Предварительные исследования свидетельствуют о высокой эффективности штаммов в отношении туберкулеза и рака мочевого пузыря. Получать эффективную векторную вакцину на основе бактерий достаточно трудно из-за нестабильности транфекции генного материала, токсичности чужеродного антигена для бактерий, малого количества экспрессированного антигена.

Генная инженерия - это экспериментальная наука, изучающая закономерности конструирования in vitro и поведение в реципиентной клетке функционально активных молекул рекомбинантной ДНК.

Объектом исследования генной инженерии являются гены - отрезки ДНК, кодирующие синтез тех или иных белков.

Принцип создания генно-инженерных вакцин заключается в том, что интересующий нас ген (ответственный за синтез иммунного белка вируса) «вырезают» из ДНК вируса с помощью ферментов (рестриктаз) и встраивают, используя ферменты (лигазы), в ДНК вектора (например, в плазмиду Е. coli - это автономная кольцевая ДНК из 4-6 тыс. пар нуклеотидов, способная размножаться в клетках Е. сой). Затем эту рекомбинантную ДНК вводят в клетки Е. coli, в которых рекомбинантная ДНК размножается (реплицируется) и происходит экспрессия встроенного гена, т. е. синтез соответствующего белка (кодируемого встроенным геном вируса).

Бактериальные клетки Е. coli культивируют в питательной среде, и происходит «наработка» иммуногенного белка вируса, который выделяют и после соответствующей очистки используют в качестве материала для вакцины. Однако необходимо отметить, что многие вирусные белки, успешно синтезированные в микроорганизмах, имеют очень низкую иммуногенную активность. Причина этого в особенностях формирования структуры вирусных белков. Как правило, они гликозилированы, имеют сложную третичную или четвертичную структуру. Так, гемагглютинин вируса гриппа находится в вирионе в виде тримера, который образуется из мономерных полипепдидов в клетках животных. Получить in vitro такую функционально активную структуру гемагглютинина не удается. Иммуногенность гемагглютинина в вирионе в несколько тысяч раз выше, чем мономерного полипептида, синтезированного в бактериях.

При получении генно-инженерных вакцин в качестве векторов кроме плазмид используют фаги, дрожжи, вирусы животных (вирус осповакцины, аденовирусы, бакуло — и герпесвирусы).

Наибольший эффект получен с вирусом осповакцины, используемым в качестве вектора. Этот вирус имеет большой геном (около 187 тыс. пар нуклеотидов). Из него можно удалить значительный участок (около 30 тыс. пар нуклеотидов), который не является жизненно необходимым для репродукции этого вируса в клетках, а на его место встроить чужеродные гены тех вирусов, против которых получают вакцину. Полученные при этом рекомбинантные ДНК способны размножаться в организме привитых и индуцировать образование иммунитета не только против оспы, но и против того вируса, чей ген встроен в его геном. Использование вируса осповакцины в качестве вектора для вакцинации имеет ряд преимуществ: способность размножаться в клетках животных многих видов; экспрессировать несколько генов; индуцировать гуморальный и клеточный иммунитеты; термостабильность; экономичное производство и легкость применения. Выявленные ранее недостатки у вируса осповакцины, связанные с реактогенностью, были в основном устранены с помощью генетических манипуляций. Возможность включения нескольких генов, кодирующих соответствующие иммуногены, дают возможность вакцинировать животных одновременно против нескольких вирусных болезней. Однако необходимо иметь в виду, что индивидуумы, уже иммунные к вирусу осповакцины, при вакцинации рекомбинантным вирусам не дают эффекта ввиду отсутствия его приживаемости.

В последние годы получены профилактические препараты из рекомбинантного штамма вируса осповакцины, содержащего гены, кодирующие поверхностные гликопротеиды вирусов гриппа, бешенства, респираторно-сицитиального, болезни Ауески, инфекционного ринотрахеита крупного рогатого скота и др.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Суть метода: гены вирулентного микроорганизма, отвечающий за синтез протективных антигенов, встраивают в геном какого-либо безвредного микроорганизма, который при культивировании продуцирует и накапливает соответствующий антиген. Примером может служить рекомбинантная вакцина против вирусного гепатита B, вакцина против ротавирусной инфекции. Наконец, имеются положительные результаты использования т.н. векторных вакцин, когда на носитель -- живой рекомбинантный вирус осповакцины (вектор) наносятся поверхностные белки двух вирусов: гликопротеин D вируса простого герпеса и гемагглютинин вируса гриппа А. Происходит неограниченная репликация вектора и развивается адекватный иммунный ответ против вирусной инфекции обоих типов.

Рекомбинантные вакцины -- для производства этих вакцин применяют рекомбинантную технологию, встраивая генетический материал микроорганизма в дрожжевые клетки, продуцирующие антиген. После культивирования дрожжей из них выделяют нужный антиген, очищают и готовят вакцину. Примером таких вакцин может служить вакцина против гепатита В (Эувакс В).

Рибосомальные вакцины

Для получения такого вида вакцин используют рибосомы, имеющиеся в каждой клетке. Рибосомы -- это органеллы, продуцирующие белок по матрице -- и-РНК. Выделенные рибосомы с матрицей в чистом виде и представляют вакцину. Примером может служить бронхиальная и дизентерийная вакцины (например, ИРС - 19, Бронхо-мунал, Рибомунил).

Другой вопрос, который следует иметь ввиду при реализации любых программ массовых иммунизаций -- это соотношение между безопасностью вакцин и их эффективностью. В программах иммунизации детей против инфекций имеется конфликт между интересом индивидуума (вакцина должна быть безопасна и эффективна) и интересом общества (вакцина должна вызывать достаточный протективный иммунитет). К сожалению, на сегодняшний день в большинстве случаев частота осложнений вакцинации тем выше, чем выше ее эффективность.

Использование новых технологий позволило создать вакцины второй генерации.

Рассмотрим подробнее некоторые из них:

Конъюгированные

Некоторые бактерии, вызывающие такие опасные заболевания, как менингиты или пневмонию (гемофилюс инфлюэнце, пневмококки), имеют антигены, трудно распознаваемые незрелой иммунной системой новорожденных и грудных детей. В конъюгированных вакцинах используется принцип связывания таких антигенов с протеинами или анатоксинами другого типа микроорганизмов, хорошо распознаваемых иммунной системой ребенка. Протективный иммунитет вырабатывается против конъюгированных антигенов.

На примере вакцин против гемофилюс инфлюэнце (Hib-b) показана эффективность в снижении заболеваемости Hib-менингитами детей до 5-ти лет в США за период с 1989 по 1994 г.г. с 35 до 5 случаев.

Субъединичные вакцины

Субъединичные вакцины состоят из фрагментов антигена, способных обеспечить адекватный иммунный ответ. Эти вакцины могут быть представлены как частицами микробов, так и получены в лабораторных условиях с использованием генно-инженерной технологии.

Примерами субъедиинчных вакцин, в которых используются фрагменты микроорганизмов, являются вакцины против Streptococcus pneumoniae и вакцина против менингококка типа А.

Рекомбинантные субъединичные вакцины (например, против гепатита B) получают путем введения части генетического материала вируса гепатита B в клетки пекарских дрожжей. В результате экспрессии вирусного гена происходит наработка антигенного материала, который затем очищается и связывается с адъювантом. В результате получается эффективная и безопасная вакцина.

Рекомбинантные векторные вакцины

Вектор, или носитель, -- это ослабленные вирусы или бактерии, внутрь которых может быть вставлен генетический материал от другого микроорганизма, являющегося причинно-значимым для развития заболевания, к которому необходимо создание протективного иммунитета. Вирус коровьей оспы используется для создания рекомбинантных векторных вакцин, в частности, против ВИЧ инфекции. Подобные исследования проводятся с ослабленными бактериями, в частности, сальмонеллами, как носителями частиц вируса гепатита B.

В настоящее время широкого применения векторные вакцины не нашли.



© 2024 yanaorgo.ru - Сайт о массаже. В здоровом теле, здоровый дух