Конечно-экспираторное давление (PEEP) при высокочастотной ИВЛ (ВЧС ИВЛ). Альвеолярное давление (auto-PEEP) при ВЧС ИВЛ. Маневр рекрутмента в педиатрической практике Трахеостомия в отделении интенсивной терапии

Конечно-экспираторное давление (PEEP) при высокочастотной ИВЛ (ВЧС ИВЛ). Альвеолярное давление (auto-PEEP) при ВЧС ИВЛ. Маневр рекрутмента в педиатрической практике Трахеостомия в отделении интенсивной терапии

02.05.2020

По существу, различия между всеми этими режимами объясняются только разным программным обеспечением , а идеальная программа пока не создана. Вероятно, прогресс VTV будет связан с усовершенствованием программ и математического анализа информации, а не конструкций вентиляторов , которые и без того вполне совершенны.

Динамика изменения давления и потока газа в дыхательных путях пациента в течение дыхательного цикла при проведении принудительной TCPL вентиляции иллюстрируется рис.4, на котором схематично изображены параллельные графики давления и потока во времени. Реальные кривые давления и потока могут отличаться от изображенных. Причины и характер изменения конфигурации рассматриваются ниже.

ПАРАМЕТРЫ TCPL ВЕНТИЛЯЦИИ.

Основными параметрами при TCPL вентиляции являются те, что устанавливаются врачом на аппарате: поток, пиковое давление вдоха, время вдоха, время выдоха (или время вдоха и частота дыхательных циклов), положительное

Аббревиатура" href="/text/category/abbreviatura/" rel="bookmark">аббревиатурами и названиями (так, как они обозначены на панелях управления аппаратов ИВЛ).

Кроме основных параметров, большое значение имеют параметры производные, то есть те, что возникают от сочетания основных параметров и от состояния легочной механики пациента. К производным параметрам относятся: среднее давление в дыхательных путях (одна из основных детерминант оксигенации) и дыхательный объем – один из основных параметров вентиляции.

Flow – поток

Под этим параметром подразумевается постоянный инспираторный поток в дыхательном контуре пациента (не путать с потоком вдыхательных путях). Величина потока должна быть достаточной для достижения установленного значения пикового давления вдоха за установленное время вдоха, когда клапан APL закрыт. Величина потока зависит от массы тела пациента, от емкости применяемого дыхательного контура и от величины пикового давления. Для вентиляции среднего доношенного новорожденного с физиологическими параметрами и при использовании стандартного неонатального дыхательного контура достаточным является поток в 6литров/мин. Для недоношенных детей может быть достаточным поток в 3 – 5литров/мин. При использовании аппаратов “Stephan” разных моделей, которые имеют дыхательный контур меньшей емкости, чем стандартный одноразовый, могут использоваться меньшие значения потока. При необходимости применять высокие пиковые давления с большой частотой дыхательных циклов приходится увеличивать поток до 8 – 10л/мин., так как давление должно успеть подняться за короткое время вдоха. При вентиляции детей с массой – 12кг. (с большей емкостью дыхательного контура) могут потребоваться потоки в 25л/мин и выше.

От величины потока зависит форма кривой давления в дыхательных путях. Увеличение потока вызывает более быстрый подъем давления в ДП. Слишком большой поток мгновенно повышает давление в ДП (аэродинамический удар) и может вызвать беспокойство ребенка и спровоцировать «борьбу» с вентилятором. Зависимость формы кривой давления от величины потока иллюстрируется рис.5. Но форма кривой давления зависит не только от величины потока, но и от податливости (С) респираторной системы пациента. При низком С выравнивание давлений в контуре пациента и альвеолах будет происходить быстрее, а форма кривой давления приблизится к квадратной.

Выбор величины потока зависит и от размера интубационной трубки, в которой может возникнуть турбулентность, снижающая эффективность спонтанных вдохов и увеличивающая работу дыхания. В ИТ Ø 2,5мм турбулентность появляется при потоке 5л/мин, в ИТ Ø 3мм при потоке 10л/мин.

От величины потока в контуре пациента зависит и форма кривой потока в ДП. При низком потоке играет роль сжатие газа в дыхательном контуре (прежде всего в камере увлажнителя), поэтому инспираторный поток вначале нарастает, а затем по мере заполнения легких падает. При высоком потоке сжатие газа происходит быстро, поэтому инспираторный поток сразу поступает с максимальным значением. (рис.6)

При состояниях с высоким Raw и региональной неравномерностью вентиляции предпочтительно выбирать такие величины потока и времени вдоха, чтобы обеспечить форму кривой давления близкую к треугольной. Это приведет к улучшению распределения дыхательного объема, то есть позволит избежать развития волюмтравмы в участках с нормальными значениями Raw.


Если при спонтанных вдохах пациента давление в контуре снижается > 1cм Н2О, то поток недостаточен и его следует увеличить.

В аппаратах с неразделенным потоком (инспираторным и экспираторным) высокая скорость потока в дыхательном контуре с малым внутренним диаметром может создать сопротивление выдоху, что увеличивает значение РЕЕР (выше установленного) и может повысить работу дыхания пациента, провоцируя активный выдох.

https://pandia.ru/text/78/057/images/image005_109.jpg" width="614" height="204 src=">

Рис 6. Динамика потока в ДП при различных скоростях потока в дыхательном контуре

А) Инспираторный поток нарастает, но не успевает заполнить легкие за время

С) Инспираторный поток заполняет легкие, снижается и прекращается раньше

наступления времени выдоха.

Пиковое давление вдоха – PIP ( peak inspiratory pressure).

PIP является основным параметром, который определяет величину дыхательного объема (Vt), хотя последний зависит и от уровня РЕЕР. То есть Vt зависит от ΔР=PIP-PEEP (drive pressure), но уровень РЕЕР колеблется в значительно меньшем диапазоне. Но Vt будет зависеть и от легочной механики. При увеличении Raw (САМ, БЛД, бронхиолит, закупорка интубационной трубки) и коротком времени вдоха Vt будет снижаться. При снижении С (RDS, отек легких) Vt также снизится. Увеличение С (введение сурфактанта, дегидратация) повысит Vt. У пациентов с высокой податливостью респираторной системы (недоношенные со здоровыми легкими, ИВЛ которым проводится по поводу апноэ или оперативного лечения) величина PIP для обеспечения адекватной вентиляции может быть 10 – 12см Н2О. Для доношенных новорожденных с нормальными легкими PIP = 13 – 15см Н2О обычно бывает достаточным. В то же время у пациентов с «жесткими» легкими может потребоваться PIP > 25см Н2О для достижения минимального Vt то есть 5мл/кг массы тела.

Большинство осложнений ИВЛ связаны с неправильным подбором величины PIP. Высокие значения PIP (25 – 30см Н2О) ассоциируются с баро/волюмтравмой, снижением сердечного выброса, повышением внутричерепного давления, гипервентиляцией и ее последствиями. Недостаточная величина PIP (индивидуальная для каждого пациента) ассоциируется с ателектравмой и гиповентиляцией.

Подбор адекватной величины PIP проще всего проводить, ориентируясь на достижение «нормальных» экскурсий грудной клетки. Однако, такой подбор является субъективным и должен подкрепляться аускультативными данными и (по возможности) мониторингом дыхания, то есть измерением Vt, определением форм кривых и петель, а также данными газового анализа крови.

Для поддержания адекватной вентиляции и оксигенации следует выбирать минимально возможные значения PIP, так как это снижает тканевой стресс и риск развития VILI (ventilator-induced lung injury).

Положительное давление в конце выдоха – PEEP

( positive end- expiratory pressure).

Каждый интубированый пациент должен быть обеспечен уровнем РЕЕР не менее 3см Н2О, что моделирует эффект смыкания голосовой щели во время выдоха в норме. Этот эффект препятствует развитию ЭЗДП и поддерживает ФОЕ. FRC = PEEP × C при проведении ИВЛ. Вентиляция с нулевым уровнем РЕЕР – ZEEP (zero end-expiratory pressure) является режимом, повреждающим легкие.

РЕЕР препятствует спадению альвеол и способствует открытию нефункционирующих бронхиол и альвеол у недоношенных детей. РЕЕР способствует перемещению жидкости их альвеолярного в интерстициальное пространство (baby lung effect), сохраняя, таким образом, активность сурфактанта (в том числе и экзогенного). При сниженной растяжимости легких повышение уровня РЕЕР облегчает раскрытие альвеол (recruitment) и снижает работу дыхания при спонтанных вдохах, а растяжимость легочной ткани увеличивается, но не всегда. Пример улучшения растяжимости легких при увеличении РЕЕР до уровня СРР (collapse pressure point) иллюстрируется рис. 7.

Рис 7. Увеличение растяжимости респираторной системы при повышении РЕЕР

до уровня СРР.

Если снижение растяжимости респираторной системы связано с торакоабдоминальными факторами (пневмоторакс, высокое стояние диафрагмы и др.), то увеличение РЕЕР только ухудшит гемодинамику, но не улучшит газообмен.

При спонтанном дыхании РЕЕР уменьшает западение уступчивых мест грудной клетки, особенно у недоношенных детей.

При TCPL вентиляции увеличение РЕЕР всегда снижает ΔР определяющую Vt. Снижение дыхательного объема может привести к развитию гиперкапнии, что потребует увеличения PIP или частоты дыхания.

РЕЕР является параметром вентиляции в наибольшей степени влияющим на МАР (mean airway pressure) и, соответственно, на диффузию кислорода и оксигенацию.

Подбор адекватного значения РЕЕР для каждого конкретного пациента является непростой задачей. Следует учитывать характер поражения легких (данные рентгенографии, конфигурацию петли P/V, наличие экстрапульмонального шунтирования), изменение оксигенации в ответ на изменение РЕЕР. При вентиляции больных с неповрежденными легкими следует применять РЕЕР = 3см Н2О, что соответствует физиологической норме. В острую фазу легочных заболеваний уровень РЕЕР не должен быть < 5см Н2О, исключением является персистирующая легочная гипертензия, при которой рекомендуется ограничивать РЕЕР до 2см Н2О. Считается, что величины РЕЕР < 6см Н2О не оказывают отрицательного воздействия на легочную механику, гемодинамику и мозговой кровоток. Однако, Keszler M. 2009; считает, что при очень низкой растяжимости легких вполне уместны уровни РЕЕР в 8см Н2О и выше, которые способны восстановить V/Q и оксигенацию. При баротравме, особенно интерстициальной эмфиземе, возможно снижение уровня РЕЕР до нуля, если нет возможности перевести пациента с CMV на HFO. Но при любых обстоятельствах оптимальными значениями РЕЕР являются наименьшие, при которых достигается наилучший газообмен с применением относительно безопасных концентраций кислорода.

Высокие значения РЕЕР оказывают неблагоприятное воздействие на гемодинамику и мозговой кровоток. Снижение венозного возврата уменьшает сердечный выброс, увеличивают гидростатическое давление в легочных капиллярах (гемодинамическая альтерация), что может потребовать применения инотропной поддержки. Ухудшается лимфатический дренаж не только легких, но и спланхнической зоны. Повышается легочное сосудистое сопротивление и может произойти перераспределение кровотока в мало вентилируемые зоны, то есть шунтирование. Повышается работа дыхания при спонтанной дыхательной активности. Наблюдается задержка жидкости в организме. Открытие всех ДП и перерастяжение их увеличивает мертвое пространство (Vd). Но особенно вредны высокие уровни РЕЕР при негомогенных поражениях легких. Они приводят к перерастяжению легко рекрутируемых здоровых альвеол еще до окончания вдоха и высокому конечному инспираторному объему, то есть к волюмтравме и/или баротравме.

Установленный врачом уровень РЕЕР в действительности может быть выше за счет возникновения auto-PEEP. Это явление связано либо с высоким Raw, либо с недостаточным временем выдоха, а чаще с сочетанием этих факторов. Вредные эффекты auto-PEEP те же, что при высоких значениях РЕЕР, но непредусмотренное врачом снижение ΔР может привести к серьезной гиповентиляции. При наличии auto-PEEP выше риск развития баротравмы, выше порог чувствительности сенсоров потока и давления в триггерных системах. Наличие auto-РЕЕР можно определить только с помощью дыхательного монитора, как в абсолютных величинах, так и по графику потока. Снижения auto-PEEP можно добиться: применением бронхолитиков, снижением Vt, увеличением времени выдоха. У новорожденных с нормальным Raw возникновение auto-PEEP маловероятно, если время выдоха > 0,5 сек. Более вероятно развитие этого феномена при частоте дыхания > 60 в минуту. При ВЧ ИВЛ он имеет место всегда, кроме HFO.

Частота дыхания – R ( respiratory rate).

Это обозначение наиболее часто встречается в TCPL вентиляторах. В аппаратуре германского производства в основном устанавливаются время вдоха и выдоха, а частота дыхания является производной. В вентиляторах для взрослых пациентов и в наркозно-дыхательной аппаратуре частота дыхательных циклов чаще обозначается как f (frequency).

Этот параметр в значительной мере определяет минутный объем дыхания и минутный объем альвеолярной вентиляции. MV = Vt × R. MValv = R(Vt – Vd).

Можно условно выделить три диапазона частот дыхания, используемых у новорожденных: до 40 в минуту, 40 – 60 в минуту, что соответствует физиологической норме и >60 в минуту. У каждого диапазона есть свои преимущества и недостатки, но нет единого мнения об оптимальной частоте дыхания. Во многом вопрос о выборе частоты определяется приверженностью клинициста к тем или иным диапазонам. Но, в конечном итоге, любая из выбранных частот должна обеспечивать необходимый уровень минутной альвеолярной вентиляции. Нужно учитывать тип нарушений легочной механики, фазу заболевания, собственную частоту дыхания пациента, наличие баротравмы и данные КОС.

Частоты < 40/мин могут использоваться при вентиляции пациентов с неповрежденными легкими (по хирургическим или неврологическим показаниям), при уходе от ИВЛ, что стимулирует дыхательную активность пациента. Низкие частоты более эффективны при высоком Raw, так как позволяют увеличивать время вдоха и выдоха. В острую фазу легочных заболеваний некоторые авторы используют низкую частоту дыхания с инвертированным соотношением I:Е (для повышения МАР и оксигенации), что часто требует парализации больного и увеличивает вероятность баротравмы и снижения сердечного выброса из-за повышенного МАР.

Частоты/мин эффективны при лечении большинства легочных заболеваний, однако, не всегда могут обеспечить адекватную альвеолярную вентиляцию.

Частоты > 60/мин необходимы при использовании минимальных дыхательных объемов (4 – 6мл/кг массы тела), так как при этом возрастает роль мертвого пространства (Vd), которое вдобавок может увеличиваться за счет емкости сенсора потока. Этот подход может успешно применяться при «жестких» легких, так как снижает работу дыхания для преодоления эластического сопротивления, снижает тканевой стресс, уменьшает легочное сосудистое сопротивление и снижает вероятность баро/волюмтравмы легких. Однако, при укороченном времени выдоха велика вероятность возникновения auto PEEP c соответствующими неблагоприятными эффектами. Врач может не догадываться об этом, если не использует дыхательный монитор. Использование низких Vt наряду с auto PEEP может привести к развитию гиповентиляции и гиперкапнии.

Использование частот 100 – 150/мин (HFPPV- high frequency positive pressure ventilation) в настоящем материале не рассматривается.

Время вдоха – Ti ( time inspiratory), время выдоха – Te ( time expiratory) и

соотношение Ti / Te ( I: E ratio).


Общим правилом при определении минимальных значений Ti и Te является достаточность для поступления необходимого дыхательного объема и эффективного опорожнения легких (без появления auto PEEP). Эти параметры зависят от растяжимости (С) и аэродинамического сопротивления (Raw), то есть от ТС (C × Raw).

У новорожденных с неповрежденными легкими для вдоха обычно используются значения 0,35 – 0,45 сек. При снижении растяжимости легких (RDS, отек легких, диффузная пневмония – состояния с низкими значениями ТС) допустимо использовать короткое время вдоха и выдоха 0,25- 0,3 сек. При состояниях с высоким Raw (бронхообструкция, БЛД, САМ) Ti следует удлинять до 0,5, а при БЛД и до 0,6 сек. При удлинении Ti свыше 0,6 сек. может спровоцировать активный выдох против аппаратного вдоха. При Ti > 0,8 сек. многие авторы отмечают отчетливое увеличение частоты развития баротравмы.

У годовалых детей частота дыхания ниже, а Ti увеличивается до 0,6 – 0,8 сек.

Соотношение I:E. В норме вдох при спонтанном дыхании всегда короче выдоха, ввиду сопротивления экспираторному потоку голосовой щели и уменьшения сечения бронхов, что увеличивает Raw на выдохе. При поведении ИВЛ эти закономерности сохраняются, поэтому в большинстве случаев Ti < Te.

Фиксированные значения I:E применяются в основном в наркозно–дыхательной аппаратуре и в некоторых устаревших моделях TCPL вентиляторов. Это является неудобством, так как при низкой частоте дыхания время вдоха может значительно удлиняется (например, в режиме IMV). В современных вентиляторах I:E вычисляется автоматически и выводится на панель управления. Собственно соотношение I:E не так важно, как абсолютные значения Ti и Te.

Вентиляция с инвертированным соотношением I:E (Ti > Te) обычно применяется в крайних случаях, когда иным путем не удается добиться улучшения оксигенации. Основным фактором повышения оксигенации в этом случае является повышение МАР без повышения PIP.

При уходе от ИВЛ снижается частота дыхания за счет увеличения Te, при этом I:E изменяется от 1:3 до 1:10. При мекониальной аспирации некоторые авторы рекомендуют соотношения 1:3 – 1:5 для профилактики «воздушных ловушек».

Неоценимую помощь в подборе адекватных значений Ti и Te оказывает дыхательный монитор (особенно если определяет Тс). Оптимизировать значения Ti и Te можно, анализируя график потока в ДП на дисплее монитора. (Рис. 8)

Концентрация кислорода – FiO 2

От FiO2 зависит парциальное давление кислорода в дыхательной смеси, а следовательно и градиент Palv O2 – Pv O2, определяющий диффузию кислорода через альвеолокапиллярную мембрану. Поэтому FiO2 является основной детерминантой оксигенации. Но высокие концентрации кислорода токсичны для организма. Гипероксия вызывает оксидативный стресс (свободнорадикальное окисление), поражающий весь организм. Местное действие кислорода повреждает легкие (см. раздел VILI). Отдаленные последствия токсического воздействия кислорода на организм могут быть весьма печальными (слепота, ХЗЛ, неврологический дефицит и др.).

Многолетние рекомендации всегда начинать ИВЛ новорожденным с FiO2 1,0 для быстрого восстановления оксигенации к настоящему моменту считаются устаревшими. Хотя Приказ № 000 от г «О совершенствовании первичной реанимационной помощи новорожденным в родильном зале» пока остается действующим, готовится новый, учитывающий результаты исследований, выполненных уже в XXI веке. Этими исследованиями установлено, что вентиляция чистым кислородом увеличивает неонатальную смертность, оксидативный стресс сохраняется до 4 недель, усиливается повреждение почек и миокарда, увеличивается время неврологического восстановления после асфиксии . Во многих ведущих неонатальных центрах в развитых странах уже приняты иные протоколы реанимации новорожденных. Нет доказательств, что повышение FiO2 может улучшить ситуацию, если у новорожденного, несмотря на адекватную вентиляцию, сохраняется брадикардия. При необходимости проведения ИВЛ, ее начинают комнатным воздухом. Если через 30 сек вентиляции сохраняется брадикардия и/или SpO2 < 85%, то ступенчато увеличивают FiO2 с шагом 10% до достижения SpO2 < 90%. Имеются доказательства эффективности подобного подхода (доказательная медицина).

В острую фазу легочных заболеваний относительно безопасно проводить ИВЛ с FiO2 0,6 не более 2 суток. При длительной ИВЛ относительно безопасно использовать FiO2 < 0,4. Можно добиться увеличения оксигенации и иными мерами (работа с МАР, дегидратация, увеличение сердечного выброса, применение бронхолитиков и др.).

Относительно безопасны кратковременные увеличения FiO2 (к примеру, после аспирации мокроты). Мероприятия по профилактике токсичности кислорода изложены в разделе VILI.

IF - inspiratory flow EF - expiratory flow

Рис 8. Оптимизация Ti и Te с помощью анализа кривых потока в ДП.

А) Ti оптимально (поток успевает снизиться до 0). Есть резерв для увеличения

частоты дыхания за счет экспираторной паузы.

В) Ti недостаточно (поток не успевает снизиться). Увеличить Ti и/или PIP.

Допустимо при использовании минимальных Vt.

C) Ti недостаточно (поток низкий и не успевает заполнить легкие). Увеличить

поток в дыхательном контуре и/или Ti.

D) Te недостаточно (экспираторный поток не успевает достигнуть изолинии, то

есть прекратиться) Auto – PEEP. Увеличить Те за счет снижения частоты (R).

E) Ti и Te недостаточны, ни вдох ни выдох не успевают завершится. Вероятна

выраженная бронхообструкция. Auto – PEEP. Увеличить Ti и особенно Те и,

возможно, PIP.

F) Возможно уменьшение Ti1 до Ti2 без снижения Vt, так как между Ti1 и Ti2

потока в ДП нет, если не преследуется цель увеличения МАР за счет PIP плато.

Есть резерв увеличения частоты дыхания за счет инспираторной паузы.

Среднее давление в дыхательных путях – MAP( mean airway pressure).

Газообмен в легких происходит как во время вдоха, так и во время выдоха, поэтому именно МАР определяет разницу между атмосферным и альвеолярным давлениями (дополнительное давление, увеличивающее диффузию кислорода через альвеолокапиллярную мембрану). Это справедливо, если МАР = Palv. Однако, не всегда МАР отражает среднее альвеолярное давление, которое определяет диффузию кислорода и гемодинамические эффекты ИВЛ. При высокой частоте дыхания не все альвеолы успевают достаточно вентилироваться при коротком времени вдоха (особенно в зонах с повышенным Raw), поэтому Palv < MAP. При высоком Raw и коротком времени выдоха Palv > MAP из-за auto-PEEP. При высоком минутном объеме дыхания Palv > MAP. Но в обычных условиях МАР отражает среднее альвеолярное давление и поэтому является второй важной детерминантой оксигенации.

МАР является производным параметром TCPL вентиляции, так как зависит от величин основных параметров: PIP, PEEP, Ti, Te, (I:E) и потока в дыхательном контуре.

МАР можно вычислить по формуле: МАР = КΔР(Ti/Te + Te) +PEEP, где К – скорость повышения давления в ДП. Поскольку К зависит от скорости потока в контуре пациента и механических свойств легких, а реальную величину этого коэффициента мы не можем вычислить, то проще понять что такое МАР можно, используя графическую интерпретацию (в виде площади фигуры, которую образует кривая давления в ДП во время дыхательного цикла. Рис.9 а, в. Влияние потока, PIP, PEEP, Ti и I:E представлено на рис.9c, d.

Рис 9. Графическая интерпретация МАР и влияние параметров ИВЛ.

Современные вентиляторы определяют МАР автоматически, и эта информация всегда присутствует на панели управления. Манипулируя разными параметрами вентиляции, мы можем изменять МАР, не изменяя вентиляции или наоборот и т. п.

Роль различных параметров вентиляции в изменении величины МАР (и оксигенации) неодинакова: РЕЕР > PIP > I:E > Flow. Представленная иерархия справедлива при вентиляции поврежденных легких. При вентиляции здоровых легких влияние параметров ИВЛ на уровень МАР и оксигенацию может быть иным:PIP > Ti > PEEP. При баротравме повышение уровня МАР снизит оксигенацию. Увеличение частоты дыхания увеличивает МАР, так как (при неизменных прочих параметрах вентиляции) укорачивается время выдоха, а следовательно, изменяется и I:E.

Повышение уровня МАР > 14см Н2О может снизить оксигенацию из-за снижения сердечного выброса и нарушения доставки кислорода тканям. Вредные эффекты высоких уровней МАР описаны выше в разделе РЕЕР (так как именно РЕЕР в наибольшей степени влияет на уровень МАР).

Дыхательный объем – Vt ( volume tidal).

Дыхательный объем является одной из основных детерминант вентиляции (МОД, МОАВ). При ТCPL вентиляции Vt является производным параметром, так как зависит не только от установок на вентиляторе, но и от состояния легочной механики пациента, то есть от С, Raw и Тс. Vt можно только измерить с помощью дыхательного монитора.

Если не принимать во внимание влияние Raw, то Vt определяется разницей между PIP и Palv в конце выдоха и растяжимостью легких: Vt = C(PIP – Palv). Поскольку, в отсутствие auto – PEEP в конце выдоха Рalv = PEEP, то Vt = CΔP. Поэтому, при одинаковых установках на вентиляторе у одного и того же пациента Vt может быть разным. Например: У недоношенного с RDS Cdyn = 0,5мл/cм H2O, PIP – 25см H2O и РЕЕР – 5см Н2О, Vt = 0,5(25 – 5) = 10мл. После введения сурфактанта, через 12 часов Cdyn = 1,1мл/см Н2О, параметры вентиляции прежние, Vt = 1,1×20 = 22 мл. Однако, эти расчеты весьма приблизительны, так как на Vt влияют и форма кривой давления, и время вдоха/выдоха, и возможная турбулентность в ДП. Сохранение ΔР = const. при разных уровнях РЕЕР скорее всего изменит Vt, но как и насколько – трудно предсказать, ввиду нелинейного характера изменения растяжимости. Поэтому, Vt следует измерять после изменения любого из параметров вентиляции.

В настоящее время общей рекомендацией является поддержание Vt в пределах физиологических значений 5 – 8мл/кг массы тела, как у новорожденных так и у взрослых (6 – 8мл/кг вычисленной идеальной массы тела). При вентиляции здоровых легких допустимы значения 10 – 12мл/кг. «Протективная вентиляция» (lung protective ventilation) предполагает использование минимальных дыхательных объемов 5 – 6мл/кг. Это снижает тканевой стресс пораженных малорастяжимых легких.

Однако, вентиляция легких малыми объемами снижает альвеолярную вентиляцию, так как значительная часть Vt вентилирует мертвое пространство. Это обстоятельство вынуждает увеличивать альвеолярную вентиляцию за счет повышения частоты дыхания. Но при частотах > 70/мин минутный объем вентиляции начинает снижаться из-за укорочения Ti, когда Paw не успевает достигнуть уровня PIP, что снижает ΔР и Vt. А укорочение Te вызывает появление auto – PEEP, что тоже снижает ΔР и Vt. Попытки увеличения ΔР за счет снижения РЕЕР не всегда эффективны, так как низкие значения РЕЕР способствуют коллапсу части альвеол и бронхиол, что снижает площадь дыхательной поверхности.

При высоком Raw можно увеличить Vt увеличением Ti, если инспираторный поток не успевает снизиться. Однако, после выравнивания давлений (PIP = Palv) увеличение Ti не приведет к увеличению Vt. Это хорошо отслеживается при анализе кривой потока в ДП.

У детей с экстремально низкой массой тела датчик потока весьма существенно увеличивает мертвое пространство. В этой группе пациентов Vt не должен быть < 6 – 6,5мл/кг. При гиперкапнии можно увеличить альвеолярную вентиляцию уменьшением мертвого пространства, сняв переходники, датчик потока и укоротив интубационную трубку. При проведении протективной вентиляции гиперкапния в той или иной степени имеет место всегда, но ее необходимо поддерживать в допустимых пределах (permissive hypercapnia).

Только регулярные исследования газового состава крови помогают полностью контролировать адекватность альвеолярной вентиляции уровню метаболизма пациента (продукции углекислоты). В отсутствие лабораторного контроля об адекватности вентиляции можно судить по хорошей синхронизации пациента с вентилятором (если не применяется обезболивание наркотическими аналгетиками или антиконвульсанты, такие как барбитураты и бензодиазепины). Клинические же проявления гипокапнии и гиперкапнии у новорожденных практически отсутствуют, в отличие от взрослых.

Мониторинг дыхания позволяет отследить динамику изменения объема в течение дыхательного цикла (график время/объем). В частности, можно определить утечку Vt между ИТ и гортанью (Рис 10.).

Рис 10. Графики время/объем. А) Нормальный. В) Утечка объема.

Цифровая информация позволяет определить объем утечки . Допустима утечка около 10% объема. Если утечки нет, то объем выдоха может превышать объем вдоха. Это связано со сжатием газа при высоких значениях PIP и с расширением газа при согревании, если температура в дыхательном контуре невысока.

РЕГУЛЯЦИЯ ДЫХАНИЯ ПРИ ИВЛ И ВЗАИМОДЕЙСТВИЕ

ПАЦИЕНТА С ВЕНТИЛЯТОРОМ.

Большинство новорожденных не перестают дышать самостоятельно во время проведения ИВЛ, так как работа их дыхательных центров (в продолговатом мозге – РаСО2, оливах мозжечка – РН ликвора, в каротидных синусах – РаО2) не прекращается. Однако, характер ответной реакции на изменения газового состава крови и РН сильно зависит от срока гестации и постнатального возраста. Чувствительность хеморецепторов дыхательных центров снижена у недоношенных детей, а гипоксемия, ацидоз, гипотермия и особенно гипогликемия снижают ее дополнительно. Поэтому при гипоксии любого генеза у недоношенных быстро развивается депрессия дыхания. Эта центральная гипоксическая депрессия обычно проходит к третьей неделе постнатального периода. Доношенные новорожденные реагируют на гипоксию одышкой, но впоследствии может наступить депрессия дыхания, связанная с усталостью дыхательной мускулатуры. Снижение МОД в ответ на повышение FiO2 у доношенных детей развивается на вторые сутки жизни, а у недоношенных на второй неделе. Барбитураты, наркотические аналгетики и бензодиазепины вызывают депрессию дыхания тем больше, чем ниже срок гестации и постнатальный возраст.

Существует обратная связь дыхательного центра с изменениями легочных объемов, которую обеспечивают рефлексы Геринга – Бройера, регулирующие соотношение частоты и глубины дыхания. Выраженность этих рефлексов максимальна у доношенных детей, но с возрастом снижается.

1). Инспираторно – тормозящий рефлекс:

Раздувание легких на вдохе преждевременно его прекращает.

2). Экспираторно – облегчающий рефлекс:

Раздувание легких на выдохе задерживает наступление следующего вдоха.

3). Рефлекс на спадение легких:

Уменьшение объема легких стимулирует инспираторную активность и

укорачивает выдох.

Кроме рефлексов Геринга – Бройера существует так называемый парадоксальный рефлекс вдоха Геда, который заключается в углублении собственного вдоха под влиянием механического, но он наблюдается не у всех детей.

В интерстиции альвеолярных стенок содержатся т. н.”J” рецепторы, которые стимулируются перерастяжением альвеол (например, при Ti > 0,8 сек), вызывая активный выдох, что может вызвать баротравму. “J” рецепторы могут стимулироваться интерстициальным отеком и застойными явлениями в легочных капиллярах, что ведет к развитию тахипноэ (в частности TTN).

Таким образом, можно наблюдать 5 разновидностей взаимодействия пациента с вентилятором:

1). Апноэ чаще всего связано с гипокапнией (гипервентиляция), тяжелым

поражением ЦНС или медикаментозной депрессией.

2).Торможение спонтанного дыхания под влиянием рефлексов Геринга –Бройера.

3). Стимуляция спонтанного дыхания.

4). Выдох пациента против механического вдоха – «борьба» с вентилятором.

5). Синхронизация спонтанного дыхания с ИВЛ.

Наличие спонтанного дыхания при проведении ИВЛ является полезным фактором, так как:

1). Улучшает V/Q.

2). Тренирует дыхательную мускулатуру.

3). Уменьшает неблагоприятные влияния ИВЛ на гемодинамику, ВЧД и мозговой

кровоток.

4). Корректирует газовый состав крови и РН.

Исходя из вышеизложенного, оптимальными режимами ИВЛ являются те, которые позволяют синхронизировать работу пациента и вентилятора. В начальной фазе лечения пациента допустимо подавить его дыхательную активность гипервентиляцией, однако, следует помнить о ее неблагоприятном воздействии на мозговой кровоток. CMV (control mandatory ventilation) – управляемая принудительная вентиляция должна применяться при апноэ любого генеза и гиповентиляции (гипоксемия + гиперкапния). Также оправдано ее применение для снижения повышенной работы дыхания пациента (и системного потребления кислорода) при тяжелой ДН. При этом, однако, приходится подавлять дыхательную активность гипервентиляцией, седацией и/или миоплегией.

Несмотря на то, что CMV может быстро и эффективно восстановить газообмен, у нее есть существенные недостатки. К недостаткам CMV относятся: необходимость постоянного, жесткого контроля оксигенации и вентиляции, так как пациент не может их контролировать, снижение сердечного выброса, задержка жидкости в организме, гипотрофия дыхательной мускулатуры (при длительном применении), гипервентиляция может вызвать бронхоспазм. Общая продолжительность ИВЛ при использовании CMV увеличивается. Поэтому CMV должна применяться как вынужденная и, желательно, кратковременная мера.

По мере улучшения состояния пациента вентиляционная поддержка должна постепенно уменьшаться. Это стимулирует его дыхательную активность, позволяет ему частично контролировать газообмен и тренировать дыхательную мускулатуру. Мероприятия по снижению вентиляционной поддержки можно проводить разными способами. Выбор способа зависит от возможностей и качества используемой дыхательной аппаратуры и опыта врача.

Наиболее простым решением является применение режима IMV (intermittent mandatory ventilation) – перемежающейся принудительной вентиляции. Этот режим не требует использования сложной дыхательной аппаратуры (подходит любая) и заключается в постепенном снижении частоты механических вдохов. Между механическими вдохами пациент дышит самостоятельно, используя непрерывный поток в дыхательном контуре. МОД контролируется врачом лишь частично. Это представляет определенную опасность при нерегулярной дыхательной активности и требует внимания персонала. При хорошей дыхательной активности и поэтапном снижении частоты механических вдохов МОД постепенно переходит под полный контроль пациента.


0

Одной из основных задач отделения реанимации и интенсивной терапии (ОРИТ) является обеспечение адекватной респираторной поддержки. В связи с этим, для специалистов, работающих в данной области медицины, особенно важно правильно ориентироваться в показаниях и видах искусственной вентиляции легких (ИВЛ).

Показания к искусственной вентиляции легких

Основным показанием для искусственной вентиляции легких (ИВЛ) является наличие у больного дыхательной недостаточности. Прочие показания включают длительное пробуждение пациента после анестезии, нарушения сознания, отсутствие защитных рефлексов, а также усталость дыхательной мускулатуры. Главная цель искусственной вентиляции легких (ИВЛ) - улучшить газообмен, уменьшить работу дыхания и избежать осложнений при пробуждении больного. Независимо от показания к искусственной вентиляции легких (ИВЛ), основное заболевание должно быть потенциально обратимым, в противном случае невозможно отлучение от искусственной вентиляции легких (ИВЛ).

Дыхательная недостаточность

Наиболее частым показанием для респираторной поддержки служит дыхательная недостаточность. Это состояние возникает в тех ситуациях, когда происходит нарушение газообмена, приводящее к гипоксемии. может встречаться изолированно или сочетаться с гиперкапнией. Причины дыхательной недостаточности могут быть различными. Так, проблема может возникнуть на уровне альвеолокапиллярной мембраны (отек легких), дыхательных путей (перелом ребер) и т.д.

Причины дыхательной недостаточности

Неадекватный газообмен

Причины неадекватного газообмена:

  • пневмония,
  • отек легких,
  • острый респираторный дистресс-синдром (ОРДС).

Неадекватное дыхание

Причины неадекватного дыхания:

  • повреждение грудной стенки:
    • перелом ребер,
    • флотирующий сегмент;
  • слабость дыхательной мускулатуры:
    • миастения, полиомиелит,
    • столбняк;
  • угнетение центральной нервной системы:
    • психотропные препараты,
    • дислокация ствола головного мозга.
Нарушение проходимости дыхательных путей

Причины нарушения проходимости дыхательных путей:

  • обструкция верхних дыхательных путей:
    • круп,
    • отек,
    • опухоль;
  • обструкция нижних дыхательных путей (бронхоспазм).

В ряде случаев показания к искусственной вентиляции легких (ИВЛ) трудно определить. В этой ситуации следует руководствоваться клиническими обстоятельствами.

Основные показания к искусственной вентиляции легких

Выделяют следующие основные показания к искусственной вентиляции легких (ИВЛ):

  • Частота дыханий (ЧД) >35 или < 5 в мин;
  • Усталость дыхательной мускулатуры;
  • Гипоксия - общий цианоз, SaO2 < 90% при дыхании кислородом или PaO 2 < 8 кПа (60 мм рт. ст.);
  • Гиперкапния - PaCO 2 > 8 кПа (60 мм рт. ст.);
  • Снижение уровня сознания;
  • Тяжелая травма грудной клетки;
  • Дыхательный объем (ДО) < 5 мл/кг или жизненная емкость легких (ЖЕЛ) < 15 мл/кг.

Прочие показания к искусственной вентиляции легких (ИВЛ)

У ряда больных искусственная вентиляция легких (ИВЛ) проводится в качестве компонента интенсивной терапии состояний, не связанных с патологией дыхания:

  • Контроль внутричерепного давления при черепно-мозговой травме;
  • Защита дыхательных путей ();
  • Состояние после сердечно-легочной реанимации;
  • Период после длительных и обширных хирургических вмешательств или тяжелой травмы.

Виды искусственной вентиляции легких

Наиболее частым режимом искусственной вентиляции легких (ИВЛ) является вентиляция с перемежающимся положительным давлением (intermittent positive pressure ventilation - IPPV). При этом режиме легкие раздуваются под действием положительного давления, генерируемого вентилятором, газоток доставляется через эндотрахеальную или трахеостомическую трубку. Интубацию трахеи выполняют, как правило, через рот. При продленной искусственной вентиляции легких (ИВЛ) пациенты в ряде случаев лучше переносят назотрахеальную интубацию. Тем не менее, назотрахеальную интубацию технически сложнее выполнить; кроме того, она сопровождается более высоким риском кровотечений и инфекционных осложнений (синусит).

Интубация трахеи не только позволяет проводить IPPV, но и снижает объем "мертвого пространства"; кроме того, она облегчает туалет дыхательных путей. Однако, если пациент адекватен и доступен контакту, искусственную вентиляцию легких (ИВЛ) можно проводить неинвазивным способом через плотно подогнанную носовую или лицевую маску.

В принципе, в отделении реанимации и интенсивной терапии (ОРИТ) используются два типа вентиляторов - регулируемые по заранее установленному дыхательному объему (ДО) и по давлению на вдохе. Современные аппараты искусственной вентиляции легких (ИВЛ) обеспечивают различные типы искусственной вентиляции легких (ИВЛ); с клинической точки зрения важно подобрать тот вид искусственной вентиляции легких (ИВЛ), который наиболее подходит данному конкретному пациенту.

Типы искусственной вентиляции легких

Искусственная вентиляция легких (ИВЛ) по объему

Искусственная вентиляция легких (ИВЛ) по объему осуществляется в тех случаях, когда вентилятор доставляет в дыхательные пути больного заранее установленный дыхательный объем независимо от выставленного на респираторе давления. Давление в дыхательных путях определяется податливостью (жесткостью) легких. Если легкие жесткие, давление резко повышается, что может вести к риску баротравмы (разрыва альвеол, который приводит к пневмотораксу и эмфиземе средостения).

Искусственная вентиляция легких (ИВЛ) по давлению

Искусственная вентиляция легких (ИВЛ) по давлению заключается в том, что аппарат искусственной вентиляции легких (ИВЛ) достигает заранее заданный уровень давления в дыхательных путях. Таким образом, доставляемый дыхательный объем определяется податливостью легких и сопротивлением дыхательных путей.

Режимы искусственной вентиляции легких

Контролируемая искусственная вентиляция легких (ИВЛ) (controlled mechanical ventilation - CMV)

Данный режим искусственной вентиляции легких (ИВЛ) определяется исключительно установками респиратора (давление в дыхательных путях, дыхательный объем (ДО), частоту дыхания (ЧД), отношение вдоха к выдоху - I:E). Этот режим не очень часто используется в отделениях реанимации и интенсивной терапии (ОРИТ), так как не обеспечивает синхронизации со спонтанным дыханием больного. В результате CMV не всегда хорошо переносится пациентом, что требует седатации или назначения миорелаксантов для прекращения "борьбы с вентилятором" и нормализации газообмена. Как правило, режим CMV широко применяется в операционной в ходе анестезиологического пособия.

Вспомогательная искусственной вентиляции легких (ИВЛ) (assisted mechanical ventilation - AMV)

Существует несколько режимов вентиляции, позволяющих поддержать попытки спонтанных дыхательных движений больного. При этом вентилятор улавливает попытку вдоха и поддерживает ее.
У данных режимов есть два основных преимущества. Во-первых, они лучше переносятся больным и снижают потребность в седативной терапии. Во-вторых, они позволяют сохранить работу дыхательных мышц, что предотвращает их атрофию. Дыхание больного поддерживается за счет заранее установленного давления на вдохе или дыхательного объема (ДО).

Выделяют несколько разновидностей вспомогательной вентиляции:

Перемежающаяся принудительная вентиляция (intermittent mechanical ventilation - IMV)

Перемежающаяся принудительная вентиляция (intermittent mechanical ventilation - IMV) является сочетанием спонтанных и принудительных дыхательных движений. Между принудительными вдохами больной может дышать самостоятельно, без вентиляторной поддержки. Режим IMV обеспечивает минимальную минутную вентиляцию, однако может сопровождаться значительными вариациями между принудительными и спонтанными вдохами.

Синхронизированная перемежающаяся принудительная вентиляция (synchronized intermittent mechanical ventilation - SIMV)

При этом режиме принудительные дыхательные движения синхронизируются с собственными дыхательными попытками больного, что обеспечивает ему больший комфорт.

Вентиляция с поддержкой давлением (pressure-support ventilation - PSV или assisted spontaneous breaths - ASB)

При попытке собственного дыхательного движения в дыхательные пути подается заранее установленный по давлению вдох. Этот вид вспомогательной вентиляции обеспечивает больному наибольший комфорт. Степень поддержки давлением определяется уровнем давления в дыхательных путях и может постепенно снижаться в ходе отлучения от искусственной вентиляции легких (ИВЛ). Принудительных вдохов не подается, и вентиляция целиком зависит от того, может ли больной осуществлять попытки самостоятельного дыхания. Таким образом, режим PSV не обеспечивает вентиляции легких при апноэ; в этой ситуации показано его сочетание с SIMV.

Положительное давление в конце выдоха (positive end expiratory pressure - PEEP)

Положительное давление в конце выдоха (positive end expiratory pressure - PEEP) используется при всех видах IPPV. На выдохе поддерживается положительное давление в дыхательных путях, что обеспечивает раздувание спавшихся участков легких и предотвращает ателектазирование дистальных дыхательных путей. В результате улучшаются . Тем не менее, PEEP приводит к повышению внутригрудного давления и может снизить венозный возврат, что приводит к снижению артериального давления, особенно на фоне гиповолемии. При использовании PEEP до 5-10 см вод. ст. эти отрицательные эффекты, как правило, поддаются коррекции путем инфузионной нагрузки. Постоянное положительное давление в дыхательных путях (continuous positive airway pressure - CPAP) эффективно в той же степени, что и PEEP, но применяется, главным образом, на фоне спонтанного дыхания.

Начало искусственной вентиляции легких

В начале искусственной вентиляции легких (ИВЛ) ее основной задачей является обеспечение больного физиологически необходимыми дыхательным объемом (ДО) и частотой дыхания (ЧД); их величины адаптированы к исходному состоянию больного.

Начальные установки вентилятора для искусственной вентиляции легких
FiO 2 В начале искусственной вентиляции легких (ИВЛ) 1,0, затем - постепенное снижение
PEEP 5 см вод. ст.
Дыхательный объем (ДО) 7-10 мл/кг
Давление на вдохе
Частота дыхания (ЧД) 10-15 в мин
Поддержка давлением 20 см вод. ст. (на 15 см вод. ст. выше PEEP)
I:E 1:2
Триггер потока 2 л/мин
Триггер давления От -1 до -3 см вод. ст.
"Подвздохи" Ранее предназначались для профилактики ателектазов, в настоящий момент их эффективность оспаривается
Эти установки изменяют в зависимости от клинического состояния и комфорта больного

Оптимизация оксигенации при искусственной вентиляции легких

При переводе больного на искусственную вентиляцию легких (ИВЛ), как правило, рекомендуют изначально устанавливать FiO 2 = 1,0 с последующим снижением этого показателя до той его величины, которая позволила бы поддерживать SaO 2 > 93%. В целях профилактики повреждения легких, обусловленного гипероксией, необходимо избегать поддержания FiO 2 > 0,6 в течение длительного времени.

Одним из стратегических направлений по улучшению оксигенации без повышения FiO 2 может служить увеличение среднего давления в дыхательных путях. Этого можно добиться путем повышения PEEP до 10 см вод. ст. или, при вентиляции, контролируемой по давлению, путем увеличения пикового давления на вдохе. Однако следует помнить о том, что при повышении этого показателя > 35 см вод. ст. резко возрастает риск баротравмы легких. На фоне тяжелой гипоксии () может потребоваться применение дополнительных методов респираторной поддержки, направленных на улучшение оксигенации. Одним из таких направлений служит дальнейшее увеличение PEEP > 15 см вод. ст. Кроме того, может быть использована стратегия низких дыхательных объемов (6-8 мл/кг). Следует помнить, что применение этих методик может сопровождаться артериальной гипотензией, которая наиболее часто встречается у больных, получающих массивную инфузионную терапию и инотропную / вазопрессорную поддержку.

Еще одно из направлений респираторной поддержки на фоне гипоксемии - увеличение времени вдоха. В норме отношение вдоха к выдоху составляет 1:2, при нарушениях оксигенации оно может быть изменено до 1:1 или даже 2:1. Следует помнить, что увеличение времени вдоха может плохо переноситься теми пациентами, которые требуют седации. Снижение минутной вентиляции может сопровождаться повышением PaCO 2 . Эта ситуация получила название "пермиссивная гиперкапния". С клинической точки зрения она не представляет особых проблем за исключением тех моментов, когда необходимо избежать повышения внутричерепного давления. При пермиссивной гиперкапнии рекомендуется поддерживать pH артериальной крови выше 7,2. При тяжелом ОРДС может быть использовано положение на животе, позволяющее улучшить оксигенацию путем мобилизации спавшихся альвеол и улучшения соотношения между вентиляцией и перфузией легких. Однако это положение затрудняет мониторинг за пациентом, поэтому его необходимо применять достаточно осторожно.

Улучшение элиминации углекислого газа при искусственной вентиляции легких

Выведение углекислого газа можно улучшить за счет увеличения минутного объема вентиляции. Этого можно достичь путем увеличения дыхательного объема (ДО) или частоты дыхания (ЧД).

Седация при искусственной вентиляции легких

Большинство пациентов, находящихся на искусственной вентиляции легких (ИВЛ), требуют для того, чтобы адаптироваться к пребыванию эндотрахеальной трубки в дыхательных путях. В идеале должна назначаться лишь легкая седация, при этом пациент должен оставаться контактным и, в то же время, адаптированным к вентиляции. Кроме того, необходимо, чтобы на фоне седации больной был способен осуществлять попытки самостоятельных дыхательных движений, чтобы исключить риск атрофии дыхательных мышц.

Проблемы в ходе искусственной вентиляции легких

"Борьба с вентилятором"

При десинхронизации с респиратором в ходе искусственной вентиляции легких (ИВЛ) отмечается падение дыхательного объема (ДО), обусловленное повышением сопротивления на вдохе. Это приводит к неадекватной вентиляции и гипоксии.

Различают несколько причин десинхронизации с респиратором:

  • Факторы, обусловленные состоянием больного - дыхание, направленное против вдоха со стороны аппарата искусственной вентиляции легких (ИВЛ), задержка дыхания, кашель.
  • Снижение податливости легких - патология легких (отек легких, пневмония, пневмоторакс).
  • Увеличение сопротивления на уровне дыхательных путей - бронхоспазм, аспирация, избыточная секреция трахеобронхиального дерева.
  • Дисконнекция вентилятора или , утечка, неисправность аппаратуры, закупорка эндотрахеальной трубки, ее перекрут или дислокация.

Диагностика проблем с вентиляцией

Высокое давление в дыхательных путях в результате обструкции эндотрахеальной трубки.

  • Пациент мог пережать трубку зубами - введите воздуховод, назначьте седативные препараты.
  • Обструкция дыхательных путей в результате избыточной секреции - проведите отсасывание содержимого трахеи и при необходимости лаваж трахеобронхиального дерева (5 мл физиологического раствора NaCl). Если необходимо, реинтубируйте больного.
  • Эндотрахеальная трубка сместилась в правый главный бронх - подтяните трубку назад.

Высокое давление в дыхательных путях в результате внутрилегочных факторов:

  • Бронхоспазм? (хрипы на вдохе и выдохе). Убедитесь в том, что эндотрахеальная трубка не введена слишком глубоко и не стимулирует карину. Назначьте бронходилататоры.
  • Пневмоторакс, гемоторакс, ателектаз, плевральный выпот? (неравномерные экскурсии грудной клетки, аускультативная картина). Проведите рентгенографию грудной клетки и назначьте соответствующее лечение.
  • Отек легких? (Пенистая мокрота, с кровью, и крепитация). Назначьте диуретики, терапию сердечной недостаточности, аритмии и т.д.

Факторы седатации / анальгезии:

  • Гипервентиляция вследствие гипоксии или гиперкапнии (цианоз, тахикардия, артериальная гипертензия, потоотделение). Увеличьте FiO2 и среднее давление в дыхательных путях, используя PEEP. Увеличьте минутную вентиляцию (при гиперкапнии).
  • Кашель, дискомфорт или боль (повышение ЧСС и АД, потоотделение, выражение лица). Оцените возможные причины дискомфорта (нахождение эндотрахеальной трубки, полный мочевой пузырь, боль). Оцените адекватность анальгезии и седации. Перейдите на тот режим вентиляции, который лучше переносится больным (PS, SIMV). Миорелаксанты следует назначать только в тех случаях, когда исключены все остальные причины десинхронизации с респиратором.

Отлучение от искусственной вентиляции легких

Искусственная вентиляция легких (ИВЛ) может осложняться баротравмой, пневмонией, снижением сердечного выброса и рядом других осложнений. В связи с этим, необходимо прекратить искусственную вентиляцию легких (ИВЛ) как можно быстрее, как только позволяет клиническая ситуация.

Отлучение от респиратора показано в тех случаях, когда в состоянии пациента отмечается положительная динамика. Многие больные получают искусственную вентиляцию легких (ИВЛ) в течение короткого промежутка времени (например, после длительных и травматичных оперативных вмешательств). У ряда пациентов, напротив, искусственная вентиляция легких (ИВЛ) проводится в течение многих дней (например, ОРДС). При длительной искусственной вентиляции легких (ИВЛ) развиваются слабость и атрофия дыхательной мускулатуры, в связи с этим скорость отучения от респиратора во многом зависит от длительности искусственной вентиляции легких (ИВЛ) и характера ее режимов. Для предотвращения атрофии дыхательных мышц рекомендованы вспомогательные режимы вентиляции и адекватная нутритивная поддержка.

Больные, восстанавливающиеся после критических состояний, относятся к группе риска по возникновению "полинейропатии критических состояний". Это заболевание сопровождается слабостью дыхательной и периферической мускулатуры, снижением сухожильных рефлексов и сенсорными нарушениями. Лечение симптоматическое. Есть данные, свидетельствующие о том, что длительное назначение миорелаксантов из группы аминостероидов (векурониум) может вызвать персистирующий мышечный паралич. В связи с этим, векурониум не рекомендован для длительной нервно-мышечной блокады.

Показания для отлучения от искусственной вентиляции легких

Решение о начале отлучения от респиратора часто является субъективным и основывается на клиническом опыте.

Однако наиболее частыми показаниями к отлучению от искусственной вентиляции легких (ИВЛ) являются следующие состояния:

  • Адекватная терапия и положительная динамика основного заболевания;
  • Функция дыхания:
    • ЧД < 35 в мин;
    • FiO 2 < 0,5, SaO2 > 90%, PEEP < 10 см вод. ст.;
    • ДО > 5 мл/кг;
    • ЖЕЛ > 10 мл/кг;
  • Минутная вентиляция < 10 л/мин;
  • Отсутствие инфекции или гипертермии;
  • Стабильность гемодинамики и ВЭБ.

Перед началом отлучения от респиратора не должно быть признаков остаточной нервно-мышечной блокады, доза седативных препаратов должна быть сведена к минимуму, позволяющему поддерживать адекватный контакт с пациентом. В том случае, если сознание пациента угнетено, при наличии возбуждения и отсутствии кашлевого рефлекса, отлучение от искусственной вентиляции легких (ИВЛ) малоэффективно.

Режимы отлучения от искусственной вентиляции легких

До сих пор остается неясным, какой из методов отлучения от искусственной вентиляции легких (ИВЛ) является наиболее оптимальным.

Различают несколько основных режимов отлучения от респиратора:

  1. Тест на спонтанное дыхание без поддержки аппарата искусственной вентиляции легких (ИВЛ). Временно отключают аппарат искусственной вентиляции легких (ИВЛ) и подключают к интубационной трубке Т-образный коннектор или дыхательный контур для проведения СРАР. Периоды спонтанного дыхания постепенно удлиняют. Таким образом, пациент получает возможность для полноценной работы дыхания с периодами отдыха при возобновлении искусственной вентиляции легких (ИВЛ).
  2. Отлучение с помощью режима IMV. Респиратор доставляет в дыхательные пути больного установленный минимальный объем вентиляции, который постепенно снижают, как только пациент в состоянии увеличить работу дыхания. Аппаратный вдох при этом может синхронизироваться с собственной попыткой вдоха (SIMV).
  3. Отлучение с помощью поддержки давлением. При этом режиме аппарат подхватывает все попытки вдоха больного. Этот метод отлучения предусматривает постепенное снижение уровня поддержки давлением. Таким образом, пациент становится ответственным за увеличение объема спонтанной вентиляции. При снижении уровня поддержки давлением до 5-10 см вод. ст. выше PEEP можно начать тест на спонтанное дыхание с Т-образным коннектором или СРАР.

Невозможность отлучения от искусственной вентиляции легких

В процессе отлучения от искусственной вентиляции легких (ИВЛ) необходимо пристально наблюдать за больным, чтобы своевременно выявить признаки усталости дыхательной мускулатуры или неспособности к отлучению от респиратора. Эти признаки включают в себя беспокойство, одышку, снижение дыхательного объема (ДО) и нестабильность гемодинамики, в первую очередь, тахикардию и артериальную гипертензию. В этой ситуации необходимо увеличить уровень поддержки давлением; часто на восстановление дыхательной мускулатуре требуются многие часы. Оптимально начать отлучение от респиратора в утреннее время, чтобы обеспечить надежный мониторинг за состоянием больного в течение дня. При затянувшемся отлучении от искусственной вентиляции легких (ИВЛ) рекомендуют на ночной период увеличивать уровень поддержки давлением, чтобы обеспечить адекватный отдых пациента.

Трахеостомия в отделении интенсивной терапии

Наиболее частое показание к трахеостомии в ОРИТ - облегчение продленной искусственной вентиляции легких (ИВЛ) и процесса отлучения от респиратора. Трахеостомия позволяет снизить уровень седации и таким образом улучшает возможность контакта с больным. Кроме того, она обеспечивает эффективный туалет трахеобронхиального дерева у тех пациентов, кто неспособен к самостоятельному дренажу мокроты в результате ее избыточной продукции или слабости мышечного тонуса. Трахеостомия может проводиться в операционной, как и другая хирургическая процедура; кроме того, ее можно выполнять в палате ОРИТ у постели больного. Для ее проведения широко используется . Время для перехода с интубационной трубки на трахеостому определяется индивидуально. Как правило, трахеостомию осуществляют, если высока вероятность длительной искусственной вентиляции легких (ИВЛ) или возникают проблемы с отучением от респиратора. Трахеостомия может сопровождаться рядом осложнений. К ним относятся блокада трубки, ее диспозиция, инфекционные осложнения и кровотечение. Кровотечение может непосредственно осложнить хирургическое вмешательство; в отдаленном послеоперационном периоде оно может носить эрозийный характер за счет повреждения крупных кровеносных сосудов (например, безымянной артерии). Прочие показания к трахеостомии - обструкция верхних дыхательных путей и защита легких от аспирации при угнетении гортанно-глоточных рефлексов. Кроме того, трахеостомия может выполняться как часть анестезиологического или хирургического пособия при ряде вмешательств (например, при ларингэктомии).


Понравилась медицинская статья, новость, лекция по медицине из категории

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ
ПЕДИАТРИЧЕСКИЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ
МАНЕВР РЕКРУТМЕНТА В
ПЕДИАТРИЧЕСКОЙ ПРАКТИКЕ.
КОГДА И КАК?
Александрович Ю.С.
Заведующий кафедрой анестезиологии, реаниматологии и
неотложной педиатрии ФП и ДПО

КОНЦЕПЦИЯ «ОТКРЫТЫХ ЛЕГКИХ» (ОЛ).
Состоит в раскрытии (PIP) спавшихся пораженных зон
легких (альвеол), и поддержании (PEEP) их в раскрытом
состоянии в течение всех фаз дыхания (вдоха и
выдоха).
Важно при этом предотвратить коллабирование
легких (PEEP).
ПРЕИМУЩЕСТВА: улучшение оксигенации артериальной
крови, которая была вызвана нарастанием фракции
внутрилегочного шунта и уменьшение легочной растяжимости
путем смещения наклона кривой P/V к более высокой точке
эффективности и предотвращение циклического
открытия/коллапса альвеол при каждом дыхательном цикле.
Lachmann B. Open up the lung and keep the lung open. Intensive Care Med 1992; 18:319– 3 2 1

КОНЦЕПЦИЯ «ОТКРЫТЫХ» ЛЕГКИХ (OPEN LUNG STRATEGY)

Маневр рекруитмента – метод респираторной терапии,
направленный на увеличение числа альвеол,
участвующих в вентиляции (F.J.J. Halbertsma et al.,
2007)
Маневр мобилизации альвеол – стратегия респираторной
поддержки,
заключающаяся
в
кратковременном
пошаговом увеличения среднего давления в дыхательных
путях
3

МАНЕВР РЕКРУТМЕНТА

Это преднамеренный динамический процесс
временного повышения транспульмонального
давления, целью которого является открытие
нестабильных безвоздушных
(коллабированных) альвеол.
(Ppl): Pl = Palv - Ppl.
Ю. В. Марченков, В. В. Мороз, В. В. Измайлов Патофизиология рекрутирующей вентиляции и ее
влияние на биомеханику дыхания (обзор литературы). Анестезиология и реаниматология № 3, 2012
с.34-41.

Нижние участки легких плохо
вентилируются в конце выдоха
из-за сдавливающего
гидростатического давления. В
конце вдоха открытые альвеолы
могут перерастягиваться (А),
избыточное напряжение может
быть генерировано на границе
между вентилируемыми и
невентилируемыми участками
легких (В), а нижние альвеолы
могут повторно открываться и
закрываться, что приводит к
повреждению тканей (С).

Три механизма вентилятор
индуцированного повреждения легких
(VILI):
а) чрезмерное растяжение ткани,
вызванное чрезмерным объемом и
давлением,
b) альвеолярный коллапс и
повторное открывание при каждом
вдохе, вторичным по отношению к
дезактивации поверхностно-активных
веществ, что вызывает динамическую
травму ткани, вызванную
деформацией
c) Гетерогенная вентиляция, при
которой возникают изолированные
участки альвеолярного коллапса
(синие стрелки), нарушает
стабильность альвеолярной
взаимозависимости.

РЕКРУТАБЕЛЬНОСТЬ

Идеальная модель, отражающая последствия повышенной проницаемости в условиях
увеличения давления, при сосуществовании неоднородных ОБЛАСТЕЙ
ГИПЕРИНФЛЯЦИИ, НОРМАЛЬНОЙ ИНФЛЯЦИИ, КОЛЛАПСА И ОБЛАСТЕЙ
КОНСОЛИДАЦИИ. Стрелками указано давление, необходимое для открытия этих зон.
∞ представляет собой бесконечное давление, т. е. эта область никогда не может быть
открыта несмотря на увеличение положительного давления в ДП.
Umbrello M, Formenti P, Bolgiaghi L, Chiumello D.Current Concepts of ARDS: A Narrative Review. Int J Mol Sci. 2016 Dec
29;18(1).

РЕКРУТАБЕЛЬНОСТЬ

Пример КТ легких у больных с высоким (верхняя панель) или низким (нижняя панель)
потенциалом рекрутирования. Стрелки указывают изменение морфологического
состояния при низком давлении в ДП (5 см Н2О), и высоком давлении в ДП (45 см Н2О)
Umbrello M, Formenti P, Bolgiaghi L, Chiumello D.Current Concepts of ARDS: A Narrative Review. Int
J Mol Sci. 2016 Dec 29;18(1).

РАЗВИТИЕ АТЕЛЕКТАЗА СРАЗУ ПОСЛЕ ИНДУКЦИИ АНЕСТЕЗИИ

КТ грудной клетки показаны легкие пациента до (слева) и после (справа) индукции
анестезии. Слева, ясно видны легочные поля в заднем отделе. Справа видно наличие
ателектаза в задней части легких (окружено красным овалом).
Hedenstierna G. Effects of anaesthesia on respiratory function. Baillière’s
Clin Anaesthesiol. 1996;10(1):1-16.

НЕГАТИВНЫЕ ЭФФЕКТЫ ОБЩЕЙ АНЕСТЕЗИИ НА ФУНКЦИЮ ДЫХАНИЯ

ПРИЧИНЫ РАЗВИТИЯ АТЕЛЕКТАЗА:
(1) миорелаксация,
(2) увеличение (FiО2),
(3) подавление вздоха.

Закон Лапласа (1806)

Закон Лапласа позволяет объяснить
увеличение PaО2:
P = 2T/r
где Р обозначает давление (в данном случае PaО2); T поверхностное натяжение; r, радиус.
Когда радиус альвеолы ​уменьшается при ателектазе, давление,
необходимое для наполнения альвеолы увеличивается. МРА
обеспечивают высокое давление, необходимое для повторной
мобилизации коллабированных альвеол.

РЕФЛЕКС ВЗДОХА

В 1964 году Bendixen и соавторы 2 обнаружили, что бодрствующие
мужчины и женщины вздыхают в среднем около 9 и 10 раз в час.
Рефлекс вздоха - нормальный гомеостатический рефлекс.
Рефлекторные влияния с ирритантных рецепторов (расположенны
в субэпителиальном пространстве дыхательных путей и
выполняют функцию одновременно механо- и хеморецепторов). В
нормальных условиях ирритантные рецепторы возбуждаются при
понижении легочной вентиляции, и в этом случае объем легких
уменьшается. В этом случае возбуждаются ирритантные
рецепторы, которые вызывают форсированный вдох ("вздох").
Вздох сводит к минимуму альвеолярно-артериальный (A-a)
градиент напряжения кислорода.
Вздох высвобождает новые порции поверхностно-активного
вещества и равномерно распределяет его на альвеолярной
поверхности в дистальных дыхательных путях.
Bendixen H.H., Smith G.M., Mead J.Pattern of ventilation in young adults. J Appl Physiol. 1964
Mar;19:195-8.

РЕФЛЕКС ВЗДОХА

В 1964 году Bendixen и соавторы выдвинули гипотезу, что
постоянная вентиляция с адекватными, но статическими
дыхательными объемами у анестезированных пациентов
ведет к прогрессирующему ателектазу и увеличению
шунта, когда отсутствуют вздохи.
Они показали, что в среднем давление кислорода
артериальной крови падает на 22%, а легочный комплайнс
на 15% при отсутствии вздохов.
После нескольких минут медленного, глубокого,
устойчивого дыхания, давление кислорода в
артериальной крови повысилось в среднем на 150 мм рт.
ст., уменьшая шунт, создаваемый статическим ДО.

«РО-5» является объемным респиратором,
предназначенным, для проведения
длительной автоматической искусственной и
вспомогательной вентиляции легких во время
наркоза или реанимации. В отличие от РО-3,
аппарат РО-5 позволяет изменять
соотношение вдоха и выдоха в пределах
1:1,3; 1:2 и 1:3; регулировать параметры
дыхания в более широких пределах; более
удобно устанавливать дыхательный объем,
проводить ручную вентиляцию легких с
использованием открытой, полуоткрытой и
полузакрытой дыхательных систем. В нем
имеются газоструйный отсос,
ПРИСПОСОБЛЕНИЯ ДЛЯ
АВТОМАТИЧЕСКОГО ПЕРИОДИЧЕСКОГО
РАСПРАВЛЕНИЯ ЛЕГКИХ, а также для
проведения вспомогательной вентиляции
легких. РО-5 комплектуется наркозным
блоком типа "Наркон-П".

Кому?

Общая анестезия
Гипоксемическая ОДН (ОРДС)
После санации ТБД

КЛИНИЧЕСКИЕ СОСТОЯНИЯ, СВЯЗАННЫЕ С ОРДС У ДЕТЕЙ

Zimmerman JJ, Akhtar SR, Caldwell E, Rubenfeld GD. Incidence and outcomes of pediatric acute lung injury.
Pediatrics. 2009;124(1):87-95.
Dahlem P, van Aalderen WM, Hamaker ME, Dijkgraaf MG, Bos AP. Incidence and short-term outcome of acute
lung injury in mechanically ventilated children. Eur Respir J. 2003;22(6):980-5.

КОГДА? АНАЛИЗ ПОКАЗАНИЙ ДЛЯ РЕКРУИТМЕНТА (F.J.J. Halbertsma et al., 2007)

Патологическое
состояние
Педиатрические
ОРИТ
Неонатальные
ОРИТ
Неадекватная
оксигенация
88%
85%
Ателектазы
50%
43%
Высокие показатели
FiO2
25%
43%
Состояния,
приводящие к
снижению ПДКВ
(разгермитизация
контура, санация ТБД)
80%
46%
183.1 Режимы традиционной вентиляции.
3.1.1 Нет данных о влиянии режима ИВЛ на исходы у
пациентов с PARDS.
3.2.1 Дыхательный объем
При любой управляемой ИВЛ у детей использовать ДО в
диапазоне физиологичных значений для возраста/веса тела
(т.е. 5-8 мл/кг массы тела предсказанный) в зависимости от
патологии легких и комплайнса дыхательной системы.
3.2.2 Использовать ДО для каждого конкретного пациента в
зависимости от тяжести заболевания. ДО 3-6 мл/кг
расчетной массы тела для пациентов с низким комплайнсом
дыхательной системы и ближе к физиологическим диапазон (5-8 мл/кг идеальной массы тела) для пациентов с
более сохранным комплайнсом дыхательной системы.
3.2.3 Ограничение давления плато
При отсутствии возможности измерения
транспульмонального давления, предел давления плато на
вдохе 28 см H2O и более высокие давления плато (29-32cm
H2O) у пациентов с повышенной жесткостью грудной клетки
(то есть, уменьшение комплайнса грудной клетки).
The Pediatric Acute Lung Injury Consensus Conference Group, 20153.3 ПДКВ/Маневры мобилизации
альвеол
3.3.1 Умеренное повышение PEEP (10-15
см H2O). Титруют под контролем оксигенации и гемодинамической
реакции у больных с тяжелым PARDS.
3.3.2 Уровни PEEP более 15 см H2O могут быть необходимы при
тяжелом PARDS, но при этом внимание должно быть уделено
ограничению давления плато!!!
3.3.3 Маркеры доставки кислорода, комплайнса респираторной
системы, и гемодинамики должны тщательно мониторироваться при
увеличении PEEP.
3.3.4 Должны быть проведены клинические исследования для оценки
влияния повышенного PEEP на исход в педиатрической популяции.
3.3.5 Осторожно использовать маневры по
мобилизации альвеол в попытке улучшить
оксигенацию медленным пошаговым
увеличением и снижением PEEP. Маневры
удлинения вдоха не могут быть рекомендованы
из-за отсутствия доступных данных.
The Pediatric Acute Lung Injury Consensus Conference Group, 2015

МЕТОДИКИ ПРОВЕДЕНИЯ РЕКРУИТМЕНТА

21

МАКСИМАЛЬНЫЕ ЗНАЧЕНИЯ ДАВЛЕНИЯ В ДЫХАТЕЛЬНЫХ ПУТЯХ, СОЗДАВАЕМЫЕ ВО ВРЕМЯ МАНЕВРА РЕКРУИТМЕНТА (F.J.J. Halbertsma et al., 2007)

Параметр
Педиатрические
ОРИТ
Неонатальные
ОРИТ
Положительное
давление конца
выдоха, см H2O
28,3±7,5
9,2 ±1,1
Положительное
давление на вдохе,
см H2O
46,7±12,1
35,8±4,9
22

Кривые «давление-объем» при здоровых легких (слева) и при ОРДС (справа)

При ОРДС повреждение легких приводит к снижению комлайенса, ФОЕ уменьшена, при этом кривая
"объем-давление" сдвинута вправо. Применение ПДКВ при ОРДС, когда снижен
комплайенс легких позволяет удерживать кривую «давление-объем» в выгодном положении, т.е. таким
образом, чтобы дыхательный объем колебался между нижней и верхней точками перегиба.

ФИЗИОЛОГИЧЕСКИЕ ОСНОВЫ МАНЕВРА РЕКРУИТМЕНТА

24

КТ ЛЕГКИХ, ПОЛУЧЕННЫЕ ПРИ ТРАССИРОВКЕ КРИВОЙ В СТАТИЧЕСКИХ УСЛОВИЯХ

Рекруитмент начинается только выше нижней точки перегиба (LIP) на кривой вдоха и
продолжается до максимального давления даже выше верхней точки перегиба (UIP).
Дерекруитмент начинается, когда давление в ДП уменьшается до точки максимальной
кривизны (PMC) и продолжается по всей остальной части кривой выдоха.

Показатель
Характеристика
Возраст, г
4,8 (1-14)
Число мальчиков
11 (52%)
Первичный РДС
15 (71%)2
Аспирационная
пневмония
2 (13%)
Инфекционная
пневмония
11 (73%)
Утопление
2 (13%)
Вторичный РДС
6 (29%)
Сепсис
4 (66%)
Применение АИК
2 (33%)
1 вертикальная черта = 1 этап маневра,
длительность которого составила 1 минуту

1. Седация, анальгезия и миоплегия
2. Положительное давление на вдохе (PIP) =
15 см Н2О от PEEP = constanta
3. Стартовый уровень PEEP = 8 см Н2О
4. Пошаговое увеличение PEEP на 2 см Н2О
каждую минуту до достижения
максимального давления в дыхательных
путях (PIP + PEEP) = 45 см Н2О или
снижения показателей комплайнса
5. Постепенное пошаговое снижение на 2 см
Н2О каждую минуту до достижения давления
критической точки закрытия альвеол
6. Подбор оптимального уровня PEEP =
давление критической точки закрытия
альвеол + 2 см Н2О
7. Повторное проведение маневра
рекруитмента для достижения давления
открытия альвеол (в течение 2 минут) с
последующей коррекций параметров ИВЛ

а – различия статистически значимы (р<0,05) по сравнению с показателями до маневра б – различия статистически значимы (р<0,01) по сравнению с по

ПОКАЗАТЕЛИ РЕСПИРАТОРНОЙ ПОДДЕРЖКИ ВО
ВРЕМЯ ПРОВЕДЕНИЯ МАНЕВРА
Показатель
До
маневра
После
маневра
Через 4 часа
после маневра
Через 12 часов
после маневра
Среднее давление в
дыхательных путях, см
Н2 О
14
(11-17)
13
(10-19)
13
(11-17)
13
(11-15)
Максимальное давление в
дыхательных путях, см
Н2О
31
(25-36)
29
(23-33)
26а
(21-30)
26а
(21-29)
Динамический комплайнс
легких, мл/см Н2О
8
(3-12)
9
(2-11)
5
(2-14)
5
(3-14)
Частота дыхания,
число/минуту
24
(20-29)
21
(18-28)
29б
(27-35)
29б
(25-33)
Концентрация кислорода
в дыхательной смеси, %
0,6
(0,45-0,65)
0,6а
(0,5-1,0)
0,5
(0,45-0,6)
0,5
(0,4-0,6)
а
б
<0,05) по сравнению с показателями до маневра
– различия статистически значимы (р<0,01) по сравнению с показателями до маневра

IO = (MAP x FiO2 x 100%)/PaO2

Маневр мобилизации альвеол у детей с СОПЛ/ОРДС
способствует улучшению оксигенации и оказывает
положительное влияние на показатели газообмена в
течение 12 часов после его проведения

Alveolar recruitment maneuver in mechanic ventilation pediatric intensive care unit children Neves V.C., Koliski A., Giraldi D.J. Rev Bras Ter Intensiva. 2009; 21(4):453-460

1.
Седация, анальгезия и
миоплегия
2. Положительное давление на
вдохе (PIP) = 15 см Н2О от PEEP
= constanta
3. Стартовый уровень PEEP = 10
см Н2О
4. Пошаговое увеличение PEEP
на 5 см Н2О каждые две минуты
до достижения максимального
давления в дыхательных путях
(PIP + PEEP) = 50 см Н2О
5. Постепенное пошаговое
снижение на 5 см Н2О каждые
две минуты до достижения
исходного уровня = 10 см Н2О

МОНИТРИНГ:ЧСС,
инвазивное АД, SaO2,
и механика дыхания.
Постоянная инфузия
мидазолама (1.5–5
мг/кг/мин) и фентанила
(1–3 мг/кг/ч), чтобы
добиться оценки 17-26
баллов по шкале
COMFORT.
За 20 мин до РМ
преоксигенация 100%
О2 в течение 5 минут.
Векуроний (0,1 мг/кг).

Протокол МР и титрования PEEP
Старт с 10 см H2O PEEP, сохраняя постоянное раздувающее давление - 15
см Н2О. МР осуществляется последовательно при увеличении PEEP 5 см Н2О
каждые 2 мин до достижения 25 см H2O PEEP. PEEP титрование основано на
оценке газометрии и механики легких.

Выводы: RM безопасен и хорошо
переносятся гемодинамически
стабильными детьми с ОРДС.
RM и пошаговый подбор параметров ПДКВ
могут улучшить функцию легких у
пациентов с ОРДС и тяжелой гипоксемией.

Среди 2,449 детей,
принимающих участие в
анализе, 353 пациентов (14%)
получали HFOV, из которых 210
(59%) - HFOV начатую в
течение 24-48 часов после
интубации. Раннее
использование HFOV было
связано с большей
длительностью ИВЛ
(отношение рисков 0.75; 95%
ДИ, 0.64-0.89; р = 0,001), но не
со смертностью (отношение
шансов, 1.28; 95% ДИ, 0.921.79; Р = 0.15), по сравнению с
CMV/поздней HFOV.

Перед рандомизацией все
дети находились на ИВЛ с
FiO2 -1, PEEP 12 см Н2О,
получали инфузионную
терапию для поддержания
высокого ЦВД (диапазон от 8
до 12 мм рт. ст.) и в основном
на инотропной и
вазпрессорной поддержке во
время RM при ИВЛ или
HFOV. Все дети были
седатированы и
релаксированы.

Использовали осциллятор SensorMedics (3100A / B) (VIASyS, США).
Поршень останавливали, при этом ребенок дышал в СPAP.
Стартовали с МАР (среднее давление в дыхательных путях) 30 см
H2O (или 35 см H2O для детей с МТ > 35 кг), непрерывное
растягивающее давление поддерживали в течение 20 с (или 30 с
для детей с МТ > 35 кг).
Затем, поршень запускали и постепенно доводили МАР до
целевого уровня (+ 5-8 см H2O выше предыдущего MAP при
конвекционной ИВЛ). Другие настройки вентилятора
корректировали исходя из клинического опыта. Начальные
параметры Δ P (амплитуда осцилляторных колебаний) были
установлены на уровне 3 × МАР при конвекционной механической
вентиляции, а частоту устанавливали в соответствии с возрастом.
FiO2 постепенно поэтапно снижали, чтобы поддерживать SpO2
выше 92%. RM повторяли, если SpO2 был ниже 95% при 100% FiO2
От 1. Газы артериальной крови брали через 1 ч после маневра.

У 9 детей группы CV использовали вентиляторы
Servo I или Bennett 840. Протокол RM
комбинировали с HFOV или CV у всех
исследованных пациентов (использовали 15-20 см
H2O PEEP, расправляющее давление 20 см Н2О, со
снижением PEEP через 2 мин, титруя пошагово
чтобы добиться наилучшего соответствия
параметров. Затем устанавливали PEEP на + 2 см
H2O выше этого уровня, и снижали PIP, чтобы
добиться уровня ДО 6-8 мл/кг).
Исходные данные клинических характеристик,
оксигенации, гемодинамических параметров и
клинических результатов регистрировали во время
процедуры и через 1, 4, 12, 24 и 48 ч после RM.

Наблюдалось значительное
увеличение PaO2/FiO2 (119,2 ± 41,1,
49,6 ± 30,6, P = 0,01 *) после 1 часа
RM с HFOV по сравнению с CV.
Исследование показало
преимущество HFOV по
сравнению с CV при RM
у детей с тяжелым
ОРДС. Существенного
влияние на
гемодинамические
параметры не
выявлено. Серьезных
осложнений отмечено
не было.

КРИТЕРИИ ВКЛЮЧЕНИЯ:
Проведение радикальной операции по поводу ВПС
Отсутствие операций на сердце в анамнезе
сАД ЛА ≥ 25 mmHg, установленное по ЭХО-КГ или ангиокардиографии и
подтвержденное интраоперационно инвазивно в ЛА после открытия перикарда и до
проведения других хирургических манипуляций

СТАРТОВЫЕ ПАРАМЕТРЫ ИВЛ
ИВЛ в режиме контроля по давлению (Nikkei vent.)
ДО 7-10 мл/кг
PEEP 5 см H2O
Соотношение вдоха к выдоху 1:2
ЧД по контролю PaCO2 в артериальной крови с
целевым значением 35-45 mmHg
Применялся рутинный контроль CO2 на выдохе
Катетеры устанавливались в бедренную артерию и
внутренную яремную вену

Один из этапов операции предполагает полное
отключение пациента от аппарата ИВЛ и
разгерметизацию контура
После завершения манипуляций с сердцем легкие
расправлялись тремя-пятью ручными вдохами с
пиковым давлением в 40 см H2O
Механическая вентиляция продолжалась со
стартовыми параметрами до наложения кожных
швов, гемодинамика стабилизировалась
применением милринона и норадреналина,
входящих в стандартный протокол операции, после
чего применялся маневр рекруитмента

МЕТОДИКА ПРОВЕДЕНИЯ МАНЕВРА
МР выполняли в 3 стадии, каждая
длится по 30 секунд:
На 1 стадии PIP до 30 H2O и PEEP до
10 см H2O
На 2 стадии только PEEP до 35 см
H2O
На 3 стадии PEEP снижали до 15 см
H2O
Интервалы между стадиями длились
по 1 минуте, для стабилизации
параметров ИВЛ

Значимое сАД ЛА наблюдалось во
время 2 и 3 стадий МР, но после
завершения маневра наблюдалось его
снижение до исходных значений.
Не наблюдалось никаких нарушений
дыхания или гемодинамики, не было
кризов повышения давления в ЛА
Неповрежденная плевральная
полость была у 5 пациентов (50%), по
Rg-данным из ОРИТ, у всех пациентов
легкие были расправлены и имели
однородную структуру, без данных за
пневмоторакс или ателектаз.
ИВЛ продолжалась в среднем 23 часа
(от 5 до 192 часов)

SI- продленное раздувание CPAP 40 cm H2O на 40 сек + подбор PEEP,
SRS – ступенчатая стратегия рекруитмента - давление 15 см H2O выше
PEEP. Внимание должно быть уделено РаСО2.

51 новорожденный
1.
2.
3.
4.
1.
2.
3.
4.
срок гестации 28-32 недели
вес более 1000 г
РДС
традиционная ИВЛ с рождения
Критерии исключения:
прогнозируемая продолжительность ИВЛ менее
24 часов;
ЭНМТ;
длительность заболевания более 72 часов;
ВПР, СУВ, ПП ЦНС.
50

ХАРАКТЕРИСТИКА ПАЦИЕНТОВ

I группа
Купирование артериальной
гипоксемии с применением
маневра рекруитмента
альвеол
II группа
Купирование артериальной
гипоксемии без применения
маневра рекруитмента
альвеол
n = 24
Мальчики 15
Девочки 9
масса тела 1343 г (1060-1540)
Апгар 1 = 4,8 (4,0-6,0)
Апгар 5 = 5,7(5,0-6,0)
n =27
Мальчики 16
Девочки 11
масса тела 1801 г (1500-2080)
Апгар 1 = 5,4 (5,0-7,0)
Апгар 5 = 5,9 (5,0-7,0)
91,6%(22) – эндотрахеальное
введение сурфактанта
(«Curosurf», 200мг/кг).
81,5%(22) – эндотрахеальное
введение сурфактанта
(«Curosurf», 200мг/кг).
66,7%(16) - антенатальная
профилактика (дексон, 24 мг)
66,7%(18) - антенатальная
профилактика (дексон, 24 мг)
51

РЕСПИРАТОРНАЯ ПОДДЕРЖКА

Параметр
I группа
II группа
Фракция кислорода в дыхательной смеси, %
48,6 (45-50)
45 (40-55)
Положительное давление на вдохе, см H2O
17,4 (16-18)
18 (17-18)
5,0 (4-5)
4,0 (3,0-4,0)
37 (34-40)
36 (30-40)
0,3 (0,28-0,31)
0,32 (0,3-0,34)
12 (11-12)
11 (9-13)
Положительное давление в конце выдоха, см
H2O
Частота дыхания, число/минуту
Время вдоха, с
Среднее давление в дыхательных путях, см H2O
«Babylog 8000+» (Draeger, Германия),
«Servo I» (Maquet, Швеция),
«Hamilton-G5» (Hamilton Medical, Швейцария)
52

МЕТОДИКА

Установка PEEP на уровне нижней точки
перегиба кривой «давление-объём»
Объем
Пошаговое увеличение PIP до нормализации
формы кривой «давление-объем»
Увеличение PEEP до уровня LIP+2 см H2O
Пошаговое снижение PIP
Достижение стартовых показателей PIP
Давление
Пошаговое снижение PEEP
53

ПОКАЗАТЕЛИ РЕСПИРАТОРНОЙ ПОДДЕРЖКИ И БИОМЕХАНИКИ НА РАЗНЫХ ЭТАПАХ МАНЕВРА

Показател
и
FiО2
%
РаО2
мм рт.ст.
PIP, см Н2О
PEEP, см Н2О
Сdyn, мл/см2
Delta P
(PIP- PEEP)
ДО выдоха,
мл/кг
I этап
II этап
III этап
IV этап
V этап
VI этап
47,8
(40-50)
47,8
(40-50)
47,8
(40-50)
36,4
(30,5-41,7)
58,8
(42,7-74,3)
97,8
(55,7-138,5)
68,2
(50,9-85,5)
58,5
(39,2-77,8)
53,5
(44,1-62,9)
16,9
(16-18)
16,8
(16-18)
24,7*
(22,5-26,9)
16,9
(16-18)
16,9
(16-18)
16,9
(16-18)
4,7
(4-5)
6,7
(6,2-7,3)
6,7
(6,2-7,3)
8,7
(8,2-9,3)
6,7
(6,2-7,3)
6,7
(6,2-7,3)
0,48
(0,37-0,61)
0,48
(0,37-0,61)
0,89
(0,8-0,96)
1,45*
(1,08-1,8)
1,63
(1,36-2,5)
1,54*
(1,14-1,94)
12,2
(11-13)
12,2
(11-13)
18*
(17-19)
10,2
(9,0-12)
10,2
(9,0-12)
25,8*
(21-30)
5,1
(3,2-5,5)
6,5*
(4,6-7,6)
Время вдоха, с
0,3
0,3
0,3
0,3
0,3
0,3
f, число/минуту
37
(35-40)
37
(35-40)
37
(35-40)
37
(35-40)
37
(35-40)
37
(35-40)
МАР, см Н2О
12,1
(11-13)
12,1
(11-13)
13,1
(12,7-13,6)
13,1
(12,7-13,6)
8,7
(8-9,5)
8,7*
(8-9,5)

ОСЛОЖНЕНИЯ

ГИПОТОНИЯ (12%). Два механизма нестабильности
гемодинамики: во-первых, повышение давления в
дыхательных путях приводит к уменьшению
венозного возврата и преднагрузки правого
желудочка. Второе, увеличение альвеолярного
давления, в свою очередь вызывает повышение
легочного сосудистого сопротивления и
постнагрузки правого желудочка.
ДЕСАТУРАЦИЯ (9%)
БАРОТРАВМА (1%).
Fan E, Wilcox ME, Brower RG, Stewart TE, Mehta S, Lapinsky SE, et al. Recruitment maneuvers for acute
lung injury: a systematic review. Am J Respir Crit Care Med. 2008;178(11):1156-63.

ОСНОВНЫЕ ПРОТИВОПОКАЗАНИЯ

нестабильность гемодинамики (гипотония),
возбуждение,
хроническая обструктивная болезнь легких,
односторонние болезни легких,
предыдущие пневмэктомии,
бронхоплевральные свищи,
Hemoptisis (примесь крови в мокроте),
не дренированный пневмоторакс,
внутричерепная гипертензия
и длительная механическая вентиляция
Borges JB, Okamoto VN, Matos GF, Caramez MP, Arantes PR, Barros F, et al. Reversibility of lung
collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med.
2006;174(3):268-78.
Gaudencio AMAS, Barbas CSV, Troster EJ, Carvalho. Recrutamento pulmonar. In: Carvalho WB,
Hirschheimer MR, Proenзa Filho JO, Freddi NA, Troster EJ, editores. Ventilaзгo pulmonar mecвnica
em neonatologia e pediatria. 2a ed. Sгo Paulo: Atheneu; 2005. p. 33-40.

ВЫВОДЫ

Выполнение маневра наиболее эффективно при
ранних стадиях ОРДС.
Более длительное время стабилизации альвеол
достигается если осуществляется контроль
давления и применяется понижающее титрование
ПДКВ.
Нет доказательств эффективности от использования
РМ для улучшения прогноза при ОРДС и, у больных
с тяжелой гипоксемией. Необходим
индивидуальный подход к каждому ребенку.
  • Дыхательный маневр, который строит квазистатическую кривую давления/объема
  • Упрощенная оценка возможности раскрытия объема легких у пациентов с острым респираторным дистресс-синдромом
  • Легкое и безопасное выполнение маневров рекрутмента легких
  • Можно сочетать с измерением пищеводного давления

Инструмент для защиты легких во время вентиляции, используемый при диагностике и рекрутменте

Инструмент для защиты легких во время вентиляции (P/V Tool Pro) обеспечивает дыхательный маневр, который строит квазистатическую кривую давления/объема. Этот метод может использоваться при оценке возможности раскрытия объема легких и определения необходимой стратегии рекрутмента.

P/V Tool Pro также может использоваться для выполнения маневра рекрутмента с применением длительной инфляции и измерения увеличения объема легких. Инструмент особенно полезен при лечении пациентов с острым респираторным дистресс-синдромом, поскольку выбор надлежащей стратегии рекрутмента легких и правильные настройки уровня PEEP имеют решающее значение для данной группы больных.

Использование функции измерения пищеводного давления вместе с инструментом P/V Tool Pro позволяют получить более четкое представление о механике легких и грудной клетки. Это делает возможным применение стратегии вентиляции с защитой легких с помощью регулировки уровня PEEP (Talmor 2008) и оптимизации параметров маневра рекрутмента, рабочего давления и дыхательного объема.

Отзывы клиентов об инструменте P/V Tool Pro

Камилла Невилль,

врач-инструктор отделения искусственной вентиляции легких,

больница в г. Орландо, штат Флорида, США

Мы рекомендуем штатным специалистам по дыхательной терапии использовать P/V Tool сразу после перевода пациента на искусственную вентиляцию легких. Это помогает достичь оптимального PEEP. По отзывам наших специалистов, этот инструмент очень полезен, особенно в тяжелых случаях.

Кен Харгетт,

главный врач отделения искусственной вентиляции легких,

методистская больница Хьюстона, Техас, США

Мы используем инструмент P/V Tool для определения исходных настроек PEEP почти у всех пациентов на искусственной вентиляции. Это делается перед интубацией, сразу после вводного наркоза. Еще мы часто применяем P/V Tool для рекрутмента, особенно у пациентов с рецидивирующим ателектазом.

Научное обоснование


  • P/V Tool является эквивалентом метода CPAP для отслеживания статических кривых P/V дыхательной системы (Piacentini 2009).
  • При проведении вентиляции с защитой легких (включая установку параметров PEEP на основе нижней точки перегиба (LIP) показатели выживаемости выше, чем при использовании традиционных методов (Amato 1998).
  • У пациентов с острым респираторным дистресс-синдромом линейная податливость дыхательной системы (Crs) взаимосвязана с возможностью раскрытия объема легких (Veillard-Baron 2003).
  • Гистерезис кривой P/V может использоваться для оценки возможности раскрытия объема легких во время стационарного лечения (Demory 2008).
  • На ранней стадии развития острого респираторного дистресс-синдрома у большинства пациентов удалось раскрыть объем легких (Borges 2006).
  • При длительной инфляции раскрытие объема легких в большинстве случаев происходит в течение первых 10 секунд (Arnal 2011).

Принцип работы P/V Tool Pro

При выполнении маневра с использованием P/V Tool Pro не нужно отсоединять дыхательный контур или изменять режим и настройки аппарата ИВЛ. Обычную вентиляцию легких можно возобновить в любое время.

Квазистатическая кривая давления/объема (P/V)

P/V Tool Pro регистрирует соотношение давления и объема легких при низкой скорости потока (2 смH2O/с). Давление в дыхательном контуре линейно зависит от заданного оператором целевого значения давления. Когда достигается целевое значение, давление снижается к начальному уровню. Полученные кривые могут быть использованы для анализа:

  • нижней точки перегиба инфляционной кривой давления/объема;
  • линейной податливости инфляционной кривой давления/объема;
  • гистерезиса (разница объема между двумя кривыми).

Маневр рекрутмента с применением длительной инфляции

Давление в дыхательном контуре линейно зависит от заданного оператором целевого значения давления при заданной оператором скорости Ramp. Конечные изменения объема записываются. При достижении целевого значение активируется заданная оператором пауза. После паузы давление спускается в линейном соотношении к заданному оператором показателю «Кон. PEEP». Интегрирование потока во время паузы и определяет объем заполненного легкого.

Загрузки

Список литературы

Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998 Feb 5;338(6):347-54

Arnal JM, Paquet J, Wysocki M, Demory D, Donati S, Granier I, Corno G, Durand-Gasselin J. Optimal duration of a sustained inflation recruitment maneuver in ARDS patients. Intensive Care Med. 2011 Oct;37(10):1588-94.

Borges JB, Okamoto VN, Matos GF, Caramez MP, Arantes PR, Barros F, Souza CE, Victorino JA, Kacmarek RM, Barbas CS, Carvalho CR, Amato MB. Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006 Aug 1;174(3):268-78.

Demory D, Arnal JM, Wysocki M, Donati S, Granier I, Corno G, Durand-Gasselin J. Recruitability of the lung estimated by the pressure volume curve hysteresis in ARDS patients. Intensive Care Med. 2008 Nov;34(11):2019-25

Grasso S, Mascia L, Del Turco M, Malacarne P, Giunta F, Brochard L, Slutsky AS, Marco Ranieri V. Effects of recruiting maneuvers in patients with acute respiratory distress syndrome ventilated with protective ventilatory strategy. Anesthesiology. 2002 Apr;96(4):795-802.

Piacentini E, Wysocki M, Blanch L. Intensive Care Med. A new automated method versus continuous positive airway pressure method for measuring pressure-volume curves in patients with acute lung injury. 2009 Mar;35(3):565-70

Talmor D, Sarge T, Malhotra A, O"Donnell CR, Ritz R, Lisbon A, Novack V, Loring SH. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008 Nov 13;359(20):2095-104

Vieillard-Baron A, Prin S, Chergui K, Page B, Beauchet A, Jardin F. Early patterns of static pressure-volume loops in ARDS and their relations with PEEP-induced recruitment. Intensive Care Med. 2003 Nov;29(11):1929-35

Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A. A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med. 2006 May;34(5):1311-8



© 2024 yanaorgo.ru - Сайт о массаже. В здоровом теле, здоровый дух