Погрешность аппроксимации методом наименьших квадратов. Аппроксимация опытных данных. Метод наименьших квадратов

Погрешность аппроксимации методом наименьших квадратов. Аппроксимация опытных данных. Метод наименьших квадратов

24.09.2019

3. Аппроксимация функций с помощью метода

наименьших квадратов

Метод наименьших квадратов применяется при обработке результатов эксперимента для аппроксимации (приближения) экспериментальных данных аналитической формулой. Конкретный вид формулы выбирается, как правило, из физических соображений. Такими формулами могут быть:

и другие.

Сущность метода наименьших квадратов состоит в следующем. Пусть результаты измерений представлены таблицей:

Таблица 4

x n

y n

(3.1)

где f - известная функция, a 0 , a 1 , …, a m - неизвестные постоянные параметры, значения которых надо найти. В методе наименьших квадратов приближение функции (3.1) к экспериментальной зависимости считается наилучшим, если выполняется условие

(3.2)

то есть сумм a квадратов отклонений искомой аналитической функции от экспериментальной зависимости должна быть минимальна .

Заметим, что функция Q называется невязкой.


Так как невязка

то она имеет минимум. Необходимым условием минимума функции нескольких переменных является равенство нулю всех частных производных этой функции по параметрам. Таким образом, отыскание наилучших значений параметров аппроксимирующей функции (3.1), то есть таких их значений, при которых Q = Q (a 0 , a 1 , …, a m ) минимальна, сводится к решению системы уравнений:

(3.3)

Методу наименьших квадратов можно дать следующее геометрическое истолкование: среди бесконечного семейства линий данного вида отыскивается одна линия, для которой сумма квадратов разностей ординат экспериментальных точек и соответствующих им ординат точек, найденных по уравнению этой линии, будет наименьшей.

Нахождение параметров линейной функции

Пусть экспериментальные данные надо представить линейной функцией:

Требуется подобрать такие значения a и b , для которых функция

(3.4)

будет минимальной. Необходимые условия минимума функции (3.4) сводятся к системе уравнений:

После преобразований получаем систему двух линейных уравнений с двумя неизвестными:

(3.5)

решая которую , находим искомые значения параметров a и b .

Нахождение параметров квадратичной функции

Если аппроксимирующей функцией является квадратичная зависимость

то её параметры a , b , c находят из условия минимума функции:

(3.6)

Условия минимума функции (3.6) сводятся к системе уравнений:


После преобразований получаем систему трёх линейных уравнений с тремя неизвестными:

(3.7)

при решении которой находим искомые значения параметров a , b и c .

Пример . Пусть в результате эксперимента получена следующая таблица значений x и y :

Таблица 5

y i

0,705

0,495

0,426

0,357

0,368

0,406

0,549

0,768

Требуется аппроксимировать экспериментальные данные линейной и квадратичной функциями.

Решение. Отыскание параметров аппроксимирующих функций сводится к решению систем линейных уравнений (3.5) и (3.7). Для решения задачи воспользуемся процессором электронных таблиц Excel .

1. Сначала сцепим листы 1 и 2. Занесём экспериментальные значения x i и y i в столбцы А и В, начиная со второй строки (в первой строке поместим заголовки столбцов). Затем для этих столбцов вычислим суммы и поместим их в десятой строке.

В столбцах C – G разместим соответственно вычисление и суммирование

2. Расцепим листы.Дальнейшие вычисления проведём аналогичным образом для линейной зависимости на Листе 1и для квадратичной зависимости на Листе 2.

3. Под полученной таблицей сформируем матрицу коэффициентов и вектор-столбец свободных членов. Решим систему линейных уравнений по следующему алгоритму:

Для вычисления обратной матрицы и перемножения матриц воспользуемся Мастером функций и функциями МОБР и МУМНОЖ .

4. В блоке ячеек H2: H 9 на основе полученных коэффициентов вычислим значенияаппроксимирующего полинома y i выч ., в блоке I 2: I 9 – отклонения D y i = y i эксп . - y i выч .,в столбце J – невязку:

Полученные таблицы и построенные с помощью Мастера диаграмм графики приведёны на рисунках6, 7, 8.


Рис. 6. Таблица вычисления коэффициентов линейной функции,

аппроксимирующей экспериментальные данные.


Рис. 7. Таблица вычисления коэффициентов квадратичной функции,

аппроксимирующей экспериментальные данные.


Рис. 8. Графическое представление результатов аппроксимации

экспериментальных данных линейной и квадратичной функциями.

Ответ. Аппроксимировали экспериментальные данные линейной зависимостью y = 0,07881 x + 0,442262 c невязкой Q = 0,165167 и квадратичной зависимостью y = 3,115476 x 2 – 5,2175 x + 2,529631 c невязкой Q = 0,002103 .

Задания. Аппроксимировать функцию, заданную таблично, линейной и квадратичной функциями.



© 2024 yanaorgo.ru - Сайт о массаже. В здоровом теле, здоровый дух

Таблица 6

№0

x

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

y

3,030

3,142

3,358

3,463

3,772

3,251

3,170

3,665

1

3,314

3,278

3,262

3,292

3,332

3,397

3,487

3,563

2

1,045

1,162

1,264

1,172

1,070

0,898

0,656

0,344

3

6,715

6,735

6,750

6,741

6,645

6,639

6,647

6,612

4

2,325

2,515

2,638

2,700

2,696

2,626

2,491

2,291

5

1.752

1,762

1,777

1,797

1,821

1,850

1,884

1,944

6

1,924

1,710

1,525

1,370

1,264

1,190

1,148

1,127

7

1,025

1,144

1,336

1,419

1,479

1,530

1,568

1,248

8

5,785

5,685

5,605

5,545

5,505

5,480

5,495

5,510

9

4,052

4,092

4,152

4,234

4,338

4,468

4,599

Аппроксимация (от латинского "approximate" -"приближаться")- приближенное выражение каких-либо математических объектов (например, чисел или функций) через другие более простые, более удобные в пользовании или просто более известные. В научных исследованиях аппроксимация применяется для описания, анализа, обобщения и дальнейшего использования эмпирических результатов.

Как известно, между величинами может существовать точная (функциональная) связь, когда одному значению аргумента соответствует одно определенное значение.

При выборе аппроксимации следует исходить из конкретной задачи исследования. Обычно, чем более простое уравнение используется для аппроксимации, тем более приблизительно получаемое описание зависимости. Поэтому важно считывать, насколько существенны и чем обусловлены отклонения конкретных значений от получаемого тренда. При описании зависимости эмпирически определенных значений можно добиться и гораздо большей точности, используя какое-либо более сложное, многопараметрическое уравнение. Однако нет никакого смысла стремиться с максимальной точностью передать случайные отклонения величин в конкретных рядах эмпирических данных. Выбирая метод аппроксимации, исследователь всегда идет на компромисс: решает, в какой степени в данном случае целесообразно и уместно «пожертвовать» деталями и, соответственно, насколько обобщенно следует выразить зависимость сопоставляемых переменных. Наряду с выявлением закономерностей замаскированных случайными отклонениями эмпирических данных от общей закономерности, аппроксимация позволяет также решать много других важных задач: формализовать найденную зависимость; найти неизвестные значения зависимой переменной путем интерполяции или, если это допустимо, экстраполяции.

Целью данной курсовой работы является изучение теоретических основ аппроксимации табулированной функции методом наименьших квадратов, и, применяя теоретические знания, нахождение аппроксимирующих полиномов. Нахождение аппроксимирующих полиномов в рамках данной курсовой работы следует путем написания программы на языке Pascal, реализующую разработанный алгоритм нахождения коэффициентов аппроксимирующего полинома, а также решить эту же задачу средствами MathCad.

В данной курсовой работе программа на языке Pascal разработана в оболочке PascalABC версия 1.0 beta. Решение задачи в среде MathCad производили в Mathcad версия 14.0.0.163.

Постановка задачи

В данной курсовой работе необходимо выполнить следующее:

1. Разработать алгоритм нахождения коэффициентов трёх аппроксимирующих полиномов (многочленов) вида

для табулированной функции y=f(x):

для степени полиномов n=2, 4, 5.

2. Построить блок-схему алгоритма.

3. Создать программу на языке Pascal, реализующую разработанный алгоритм.

5. Построить графики 3-х полученных приближающих функций в одной системе координат. На графике должны содержаться и исходные точки i , y i ) .

6. Решить задачу средствами MathCAD.

Результаты решения задачи с помощью созданной программы на языке Pascal и в среде MathCAD нужно представить в виде построенных с помощью найденных коэффициентов трёх полиномов; таблицы, содержащей полученные с помощью найденных полиномов значения функции в точках хi и среднеквадратичных отклонений.

Построение эмпирических формул методом наименьших квадратов

Очень часто, особенно при анализе эмпирических данных возникает необходимость найти в явном виде функциональную зависимость между величинами x и y , которые получены в результате измерений.

При аналитическом исследовании взаимосвязи между двумя величинами x и y производят ряд наблюдений и в результате получается таблица значений:

x ¼ ¼
y ¼ ¼

Эта таблица обычно получается как итог каких-либо экспериментов, в которых

КУРСОВАЯ РАБОТА

по дисциплине: Информатика

Тема: Аппроксимация функции методом наименьших квадратов

Введение

1.Постановка задачи

2.Расчётные формулы

Расчёт с помощью таблиц, выполненных средствами Microsoft Excel

Схема алгоритма

Расчет в программе MathCad

Результаты, полученные с помощью функции Линейн

Представление результатов в виде графиков


Введение

Целью курсовой работы является углубление знаний по информатике, развитие и закрепление навыков работы с табличным процессором Microsoft Excel и программным продуктом MathCAD и применение их для решения задач с помощью ЭВМ из предметной области, связанной с исследованиями.

Аппроксимация (от латинского "approximare" -"приближаться") - приближенное выражение каких-либо математических объектов (например, чисел или функций) через другие более простые, более удобные в пользовании или просто более известные. В научных исследованиях аппроксимация применяется для описания, анализа, обобщения и дальнейшего использования эмпирических результатов.

Как известно, между величинами может существовать точная (функциональная) связь, когда одному значению аргумента соответствует одно определенное значение, и менее точная (корреляционная) связь, когда одному конкретному значению аргумента соответствует приближенное значение или некоторое множество значений функции, в той или иной степени близких друг к другу. При ведении научных исследований, обработке результатов наблюдения или эксперимента обычно приходиться сталкиваться со вторым вариантом.

При изучении количественных зависимостей различных показателей, значения которых определяются эмпирически, как правило, имеется некоторая их вариабельность. Частично она задается неоднородностью самих изучаемых объектов неживой и, особенно, живой природы, частично - обуславливается погрешностью наблюдения и количественной обработке материалов. Последнюю составляющую не всегда удается исключить полностью, можно лишь минимизировать ее тщательным выбором адекватного метода исследования и аккуратностью работы. Поэтому при выполнении любой научно-исследовательской работы возникает проблема выявления подлинного характера зависимости изучаемых показателей, этой или иной степени замаскированных неучтенностью вариабельности: значений. Для этого и применяется аппроксимация - приближенное описание корреляционной зависимости переменных подходящим уравнением функциональной зависимости, передающим основную тенденцию зависимости (или ее "тренд").

При выборе аппроксимации следует исходить из конкретной задачи исследования. Обычно, чем более простое уравнение используется для аппроксимации, тем более приблизительно получаемое описание зависимости. Поэтому важно считывать, насколько существенны и чем обусловлены отклонения конкретных значений от получаемого тренда. При описании зависимости эмпирически определенных значений можно добиться и гораздо большей точности, используя какое-либо более сложное, много параметрическое уравнение. Однако нет никакого смысла стремиться с максимальной точностью передать случайные отклонения величин в конкретных рядах эмпирических данных. Гораздо важнее уловить общую закономерность, которая в данном случае наиболее логично и с приемлемой точностью выражается именно двухпараметрическим уравнением степенной функции. Таким образом, выбирая метод аппроксимации, исследователь всегда идет на компромисс: решает, в какой степени в данном случае целесообразно и уместно «пожертвовать» деталями и, соответственно, насколько обобщенно следует выразить зависимость сопоставляемых переменных. Наряду с выявлением закономерностей, замаскированных случайными отклонениями эмпирических данных от общей закономерности, аппроксимация позволяет также решать много других важных задач: формализовать найденную зависимость; найти неизвестные значения зависимой переменной путем интерполяции или, если это допустимо, экстраполяции.

В каждом задании формулируются условия задачи, исходные данные, форма выдачи результатов, указываются основные математические зависимости для решения задачи. В соответствии с методом решения задачи разрабатывается алгоритм решения, который представляется в графической форме.

1. Постановка задачи

1. Используя метод наименьших квадратов функцию, заданную таблично, аппроксимировать:

а) многочленом первой степени;

б) многочленом второй степени;

в) экспоненциальной зависимостью.

Для каждой зависимости вычислить коэффициент детерминированности.

Вычислить коэффициент корреляции (только в случае а).

Для каждой зависимости построить линию тренда.

Используя функцию ЛИНЕЙН вычислить числовые характеристики зависимости от.

Сравнить свои вычисления с результатами, полученными при помощи функции ЛИНЕЙН.

Сделать вывод, какая из полученных формул наилучшим образом аппроксимирует функцию.

Написать программу на одном из языков программирования и сравнить результаты счета с полученными выше.

Вариант 3. Функция задана табл. 1.

Таблица 1.

xyxyxyxyxy0.281.052.349.113.3329.434.2386.445.55187.540.872.872.6516.863.4137.454.8390.856.32200.451.656.432.7717.973.5542.444.9299.066.66212.971.998.962.8318.993.8556.945.14120.457.13275.742.088.083.0623.754.0175.085.23139.657.25321.43

2. Расчётные формулы

Часто при анализе эмпирических данных возникает необходимость найти функциональную зависимость между величинами x и y, которые получены в результате опыта или измерений.

Хi (независимая величина) задается экспериментатором, а yi , называемая эмпирическими или опытными значениями получается в результате опыта.

Аналитический вид функциональной зависимости, существующей между величинами x и y обычно неизвестен, поэтому возникает практически важная задача - найти эмпирическую формулу

(где - параметры), значения которой при возможно мало отличались бы от опытных значений.

Согласно методу наименьших квадратов наилучшими коэффициентами считаются те, для которых сумма квадратов отклонений найденной эмпирической функции от заданных значений функции будет минимальной.

Используя необходимое условие экстремума функции нескольких переменных - равенство нулю частных производных, находят набор коэффициентов, которые доставляют минимум функции, определяемой формулой (2) и получают нормальную систему для определения коэффициентов:

Таким образом, нахождение коэффициентов сводится к решению системы (3).

Вид системы (3) зависит от того, из какого класса эмпирических формул мы ищем зависимость (1). В случае линейной зависимости система (3) примет вид:

В случае квадратичной зависимости система (3) примет вид:

В ряде случаев в качестве эмпирической формулы берут функцию в которую неопределенные коэффициенты входят нелинейно. При этом иногда задачу удается линеаризовать т.е. свести к линейной. К числу таких зависимостей относится экспоненциальная зависимость

где a1и a2 неопределенные коэффициенты.

Линеаризация достигается путем логарифмирования равенства (6), после чего получаем соотношение

Обозначим и соответственно через и, тогда зависимость (6) может быть записана в виде, что позволяет применить формулы (4) с заменой a1 на и на.

График восстановленной функциональной зависимости y(x) по результатам измерений (xi, yi), i=1,2,…,n называется кривой регрессии. Для проверки согласия построенной кривой регрессии с результатами эксперимента обычно вводят следующие числовые характеристики: коэффициент корреляции (линейная зависимость), корреляционное отношение и коэффициент детерминированности.

Коэффициент корреляции является мерой линейной связи между зависимыми случайными величинами: он показывает, насколько хорошо в среднем может быть представлена одна из величин в виде линейной функции от другой.

Коэффициент корреляции вычисляется по формуле:

где - среднее арифметическое значение соответственно по x, y.

Коэффициент корреляции между случайными величинами по абсолютной величине не превосходит 1. Чем ближе к 1, тем теснее линейная связь между x и y.

В случае нелинейной корреляционной связи условные средние значения располагаются около кривой линии. В этом случае в качестве характеристики силы связи рекомендуется использовать корреляционное отношение, интерпретация которого не зависит от вида исследуемой зависимости.

Корреляционное отношение вычисляется по формуле:

где а числитель характеризует рассеяние условных средних около безусловного среднего.

Всегда. Равенство = соответствует случайным некоррелированным величинам; = тогда и только тогда, когда имеется точная функциональная связь между x и y. В случае линейной зависимости y от x корреляционное отношение совпадает с квадратом коэффициента корреляции. Величина используется в качестве индикатора отклонения регрессии от линейной.

Корреляционное отношение является мерой корреляционной связи y c x в какой угодно форме, но не может дать представления о степени приближенности эмпирических данных к специальной форме. Чтобы выяснить насколько точно построен5ная кривая отражает эмпирические данные вводится еще одна характеристика - коэффициент детерминированности.


где Sост = - остаточная сумма квадратов, характеризующая отклонение экспериментальных данных от теоретических.полн - полная сумма квадратов, где среднее значение yi.

Регрессионная сумма квадратов, характеризующая разброс данных.

Чем меньше остаточная сумма квадратов по сравнению с общей суммой квадратов, тем больше значение коэффициента детерминированности r2, который показывает, насколько хорошо уравнение, полученное с помощью регрессионного анализа, объясняет взаимосвязи между переменными. Если он равен 1, то имеет место полная корреляция с моделью, т.е. нет различия между фактическим и оценочным значениями y. В противоположном случае, если коэффициент детерминированности равен 0, то уравнение регрессии неудачно для предсказания значений y.

Коэффициент детерминированности всегда не превосходит корреляционное отношение. В случае когда выполняется равенство то можно считать, что построенная эмпирическая формула наиболее точно отражает эмпирические данные.

3. Расчёт с помощью таблиц, выполненных средствами Microsoft Excel

Для проведения расчётов данные целесообразно расположить в виде таблицы 2, используя средства табличного процессора Microsoft Excel.

Таблица 2

ABCDEFGHI10,281,050,07840,2940,0219520,0061470,082320,048790,01366120,872,870,75692,49690,6585030,5728982,1723031,0543120,91725131,656,432,722510,60954,4921257,41200617,505681,8609753,07060841,998,963,960117,83047,88059915,6823935,48252,192774,36361352,088,084,326416,80648,99891218,7177434,957312,0893924,34593562,349,115,475621,317412,812929,982249,882722,2093735,16993272,6516,867,022544,67918,6096349,31551118,39942,8249447,48610182,7717,977,672949,776921,2539358,87339137,8822,8887048,00170992,8318,998,008953,741722,6651964,14248152,0892,9439138,331272103,0623,759,363672,67528,6526287,677222,38553,1675839,692803113,3329,4311,088998,001936,92604122,9637326,34633,38201511,26211123,4137,4511,6281127,704539,65182135,2127435,47233,62300712,35445133,5542,4412,6025150,66244,73888158,823534,85013,74809113,30572143,8556,9414,8225219,21957,06663219,7065843,99324,04199815,56169154,0175,0816,0801301,070864,4812258,56961207,2944,31855417,3174164,2386,4417,8929365,641275,68697320,15591546,6624,45945118,86348174,8390,8523,3289438,8055112,6786544,23762119,4314,5092121,77948184,9299,0624,2064487,3752119,0955585,94982397,8864,59572622,61097195,14120,4526,4196619,113135,7967697,99533182,2414,79123524,62695205,23139,6527,3529730,3695143,0557748,18113819,8324,93913925,8317215,55187,5430,80251040,847170,9539948,7945776,7015,23399229,04866226,32200,4539,94241266,844252,4361595,3958006,4545,30056533,49957236,66212,9744,35561418,38295,40831967,4199446,4125,36115135,70527247,13275,7450,83691966,026362,46712584,3914017,775,61945840,06674257,25321,4352,56252330,368381,07812762,81616895,165,7727841,852652695,932089,99453,310511850,652417,56813982,9971327,3490,97713415,0797С У М М ЫПоясним, как таблица 2 составляется.

Шаг 1.В ячейки А1:A25 заносим значения xi.

Шаг 2.В ячейки B1:B25 заносим значения уi.

Шаг 3.В ячейку С1 вводим формулу=А1^2.

Шаг 4.В ячейки С1:С25 эта формула копируется.

Шаг 5.В ячейку D1 вводим формулу=А1*B1.

Шаг 6.В ячейки D1:D25 эта формула копируется.

Шаг 7.В ячейку F1 вводим формулу=А1^4.

Шаг 8.В ячейки F1:F25 эта формула копируется.

Шаг 9.В ячейку G1 вводим формулу=А1^2*B1.

Шаг 10.В ячейки G1:G25 эта формула копируется.

Шаг 11.В ячейку H1 вводим формулу = LN(B1).

Шаг 12.В ячейки H1:H25 эта формула копируется.

Шаг 13.В ячейку I1 вводим формулу=А1*LN(B1).

Шаг 14.В ячейки I1:I25 эта формула копируется.

Последующие шаги делаем с помощью автосуммирования S.

Шаг 15. В ячейку А26 вводим формулу = СУММ(А1:А25).

Шаг 16. В ячейку В26 вводим формулу = СУММ(В1:В25).

Шаг 17. В ячейку С26 вводим формулу = СУММ(С1:С25).

Шаг 18. В ячейку D26 вводим формулу = СУММ(D1:D25).

Шаг 19. В ячейку E26 вводим формулу = СУММ(E1:E25).

Шаг 20. В ячейку F26 вводим формулу = СУММ(F1:F25).

Шаг 21. В ячейку G26 вводим формулу = СУММ(G1:G25).

Шаг 22. В ячейку H26 вводим формулу = СУММ(H1:H25).

Шаг 23. В ячейку I26 вводим формулу = СУММ(I1:I25).

Аппроксимируем функцию линейной функцией. Для определения коэффициентов и воспользуемся системой (4). Используя итоговые суммы таблицы 2, расположенные в ячейках A26, B26, C26 и D26, запишем систему (4) в виде

решив которую, получим и.

Систему решали методом Крамера. Суть которого состоит в следующем. Рассмотрим систему n алгебраических линейных уравнений с n неизвестными:

Определителем системы называется определитель матрицы системы:

Обозначим - определитель, который получится из определителя системы Δ заменой j-го столбца на столбец

Таким образом, линейная аппроксимация имеет вид

Решение системы (11) проводим, пользуясь средствами Microsoft Excel. Результаты представлены в таблице 3.

Таблица 3

ABCDE282595,932089,992995,93453,310511850,653031Обратная матрица320,212802-0,04503a1=-88,9208133-0,045030,011736a2=44,95997

В таблице 3 в ячейках A32:B33 записана формула {=МОБР(А28:В29)}.

В ячейках Е32:Е33 записана формула {=МУМНОЖ(А32:В33),(C28:С29)}.

Далее аппроксимируем функцию квадратичной функцией. Для определения коэффициентов a1, a2 и a3 воспользуемся системой (5). Используя итоговые суммы таблицы 2, расположенные в ячейках A26, B26, C26 , D26, E26, F26, G26 запишем систему (5) в виде

решив которую, получим a1=10,663624, и

Таким образом, квадратичная аппроксимация имеет вид

Решение системы (16) проводим, пользуясь средствами Microsoft Excel. Результаты представлены в таблице 4.

Таблица 4

ABCDEF362595,93453,31052089,993795,93453,31052417,56811850,65538453,31052417,56813982,9971327,3453940Обратная матрица410,632687-0,314390,033846a1=10,66362442-0,314390,184534-0,021712a2=-18,924512430,033846-0,021710,002728a3=8,0272305

В таблице 4 в ячейках А41:С43 записана формула {=МОБР(А36:С38)}.

В ячейках F41:F43 записана формула {=МУМНОЖ(А41:C43),(D36:D38)}.

Теперь аппроксимируем функцию экспоненциальной функцией. Для определения коэффициентов и прологарифмируем значения и, используя итоговые суммы таблицы 2, расположенные в ячейках A26, C26, H26 и I26, получим систему

Решив систему (18), получим и.

После потенцирования получим.

Таким образом, экспоненциальная аппроксимация имеет вид

Решение системы (18) проводим, пользуясь средствами Microsoft Excel. Результаты представлены в таблице 5.

Таблица 5

BCDEF462595,9390,977134795,93453,3105415,07974849Обратная матрицас=0,667679 500,212802-0,04503а2=0,774368 51-0,045030,011736а1=1,949707

В ячейках А50:В51 записана формула {=МОБР(А46:В47)}.

В ячейке Е51 записана формула=EXP(E49).

Вычислим среднее арифметическое и по формулам:

Результаты расчета и средствами Microsoft Excel представлены в таблице 6.

Таблица 6

BC54Xср=3,837255Yср=83,5996

В ячейке В54 записана формула=А26/25.

В ячейке В55 записана формула=В26/25

Таблица 7

ABJKLMNO10,281,05293,645412,653676814,4365987,97624,444081,88177520,872,87239,54098,8042766517,2682774,7226,7334610,91071731,656,43168,78534,7838445955,147448,035726,395820,32073741,998,96137,87433,4121485571,0770,7358817,368220,02062652,088,08132,7033,0877525703,2112,138714,2039422,82478262,349,11111,52582,2416085548,70151,488211,4985887,99584272,6516,8679,233251,4094444454,174178,5730,000622,83382582,7717,9770,039911,1389164307,244311,46313,4777091,73059692,8318,9965,074791,0144524174,4373,4915,7914362,382273103,0623,7546,515110,604043581,975620,344117,375498,423061113,3329,4327,474820,2572522934,346983,819852,2462113,94466123,4137,4519,715110,18252129,786725,90914,090409102,2541133,5542,4411,821040,0824841694,113797,89844,861044143,3219143,8556,94-0,341240,000164710,7343741,750,023142342,3946154,0175,08-1,472190,0298672,58358265,3212126,0007996,9257164,2386,441,1157090,1542928,067872219,6288148,75781214,778174,8390,857,1981970,98565252,56831397,703245,695876,64891184,9299,0616,740521,172456239,0241103,718163,9776121,868195,14120,4548,00871,6972881357,952471,908425,17881258,6007205,23139,6578,0671,9398923141,64743,1629470,45155769,9408215,55187,54178,02912,93368410803,61725,38421200,5291951,06226,32200,45290,11626,16429613654,0227,28786126,28273577,409236,66212,97365,18687,968216736,76,038755767,788515795,87247,13275,74632,679910,8425336917,931944,47565,1469344766,92257,25321,43811,667611,647256563,37121,842677,966445516,82695,932089,93830,94585,207919964427404,823786,286115678,1С у м м ыОстаточные суммыXYлинейн.квадр.экспон.

Поясним как она составляется.

Ячейки А1:А26 и В1:В26 уже заполнены.

Шаг 1.В ячейку J1 вводим формулу = (А1-$B$54)*(B1-$B$55).

Шаг 2.В ячейки J2:J25 эта формула копируется.

Шаг 3.В ячейку K1 вводим формулу = (А1-$B$54)^2.

Шаг 4.В ячейки k2:K25 эта формула копируется.

Шаг 5.В ячейку L1 вводим формулу = (B1-$B$55)^2.

Шаг 6.В ячейки L2:L25 эта формула копируется.

Шаг 7.В ячейку M1 вводим формулу = ($E$32+$E$33*A1-B1)^2.

Шаг 8.В ячейки M2:M25 эта формула копируется.

Шаг 9.В ячейку N1 вводим формулу = ($F$41+$F$42*A1+$F$43*A1^2-B1)^2.

Шаг 10.В ячейки N2:N25 эта формула копируется.

Шаг 11.В ячейку O1 вводим формулу = ($E$51*EXP($E$50*A1)-B1)^2.

Шаг 12.В ячейки O2:O25 эта формула копируется.

Последующие шаги делаем с помощью авто суммирования S.

Шаг 13.В ячейку J26 вводим формулу = CУММ(J1:J25).

Шаг 14.В ячейку K26 вводим формулу = CУММ(K1:K25).

Шаг 15.В ячейку L26 вводим формулу = CУММ(L1:L25).

Шаг 16.В ячейку M26 вводим формулу = CУММ(M1:M25).

Шаг 17.В ячейку N26 вводим формулу = CУММ(N1:N25).

Шаг 18.В ячейку O26 вводим формулу = CУММ(O1:O25).

Теперь проведем расчеты коэффициента корреляции по формуле (8) (только для линейной аппроксимации) и коэффициента детерминированности по формуле (10). Результаты расчетов средствами Microsoft Excel представлены в таблице 8.

Таблица 8

AB57Коэффициент корреляции0,92883358Коэффициент детерминированности (линейная аппроксимация)0,8627325960Коэффициент детерминированности (квадратичная аппроксимация)0,9810356162Коэффициент детерминированности (экспоненциальная аппроксимация)0,42057863В ячейке E57 записана формула=J26/(K26*L26)^(1/2).

В ячейке E59 записана формула=1-M26/L26.

В ячейке E61 записана формула=1-N26/L26.

В ячейке E63 записана формула=1-O26/L26.

Анализ результатов расчетов показывает, что квадратичная аппроксимация наилучшим образом описывает экспериментальные данные.

Схема алгоритма

Рис. 1. Схема алгоритма для программы расчёта.

5. Расчет в программе MathCad

Линейная регрессия

·line (x, y) - вектор из двух элементов (b, a) коэффициентов линейной регрессии b+ax;

·x - вектор действительных данных аргумента;

·y - вектор действительных данных значений того же размера.

Рисунок 2.

Полиномиальная регрессия означает приближение данных (х1, у1) полиномом k-й степени При k=i полином является прямой линией, при k=2 - параболой, при k=3 - кубической параболой и т.д. Как правило, на практике применяются k<5.

·regress (x,y,k) - вектор коэффициентов для построения полиномиальной регрессии данных;

·interp (s,x,y,t) - результат полиномиальной регрессии;

·s=regress(x,y,k);

·x - вектор действительных данных аргумента, элементы которого расположены в порядке возрастания;

·y - вектор действительных данных значений того же размера;

·k - степень полинома регрессии (целое положительное число);

·t - значение аргумента полинома регрессии.

Рисунок 3

Кроме рассмотренных, в Mathcad встроено еще несколько видов трехпараметрической регрессии, их реализация несколько отличается от приведенных выше вариантов регрессии тем, что для них, помимо массива данных, требуется задать некоторые начальные значения коэффициентов a, b, c. Используйте соответствующий вид регрессии, если хорошо представляете себе, какой зависимостью описывается ваш массив данных. Когда тип регрессии плохо отражает последовательность данных, то ее результат часто бывает неудовлетворительным и даже сильно различающимся в зависимости от выбора начальных значений. Каждая из функций выдает вектор уточненных параметров a, b, c.

Результаты, полученные с помощью функции ЛИНЕЙН

Рассмотрим назначение функции ЛИНЕЙН.

Эта функция использует метод наименьших квадратов, чтобы вычислить прямую линию, которая наилучшим образом аппроксимирует имеющиеся данные.

Функция возвращает массив, который описывает полученную прямую. Уравнение для прямой линии имеет следующий вид:

M1x1 + m2x2 + ... + b или y = mx + b,

алгоритм табличный microsoft программный

Для получения результатов необходимо создать табличную формулу, которая будет занимать 5 строк и 2 столбца. Этот интервал может располагаться в произвольном месте на рабочем листе. В этот интервал требуется ввести функцию ЛИНЕЙН.

В результате должны заполниться все ячейки интервала А65:В69 (как показано в таблице 9).

Таблица 9.

АВ6544,95997-88,9208663,73946615,92346670,86273234,5183168144,55492369172239,227404,82

Поясним назначение некоторых величин, расположенных в таблице 9.

Величины, расположенные в ячейках А65 и В65 характеризуют соответственно наклон и сдвиг.- коэффициент детерминированности.- F-наблюдаемое значение.- число степеней свободы.- регрессионная сумма квадратов.- остаточная сумма квадратов.

Представление результатов в виде графиков

Рис. 4. График линейной аппроксимации

Рис. 5. График квадратичной аппроксимации

Рис. 6. График экспоненциальной аппроксимации

Выводы

Сделаем выводы по результатам полученных данных.

Анализ результатов расчетов показывает, что квадратичная аппроксимация наилучшим образом описывает экспериментальные данные, т.к. линия тренда для неё наиболее точно отражает поведение функции на данном участке.

Сравнивая результаты, полученные при помощи функции ЛИНЕЙН, видим, что они полностью совпадают с вычислениями, проведенными выше. Это указывает на то, что вычисления верны.

Результаты, полученные с помощью программы MathCad, полностью совпадают со значениями приведенными выше. Это говорит о верности вычислений.

Список используемой литературы

  1. Б.П. Демидович, И.А. Марон. Основы вычислительной математики. М: Государственное издательство физико-математической литературы.
  2. Информатика: Учебник под ред. проф. Н.В. Макаровой. М: Финансы и статистика, 2007.
  3. Информатика: Практикум по технологии работы на компьютере под ред. проф. Н.В. Макаровой. М: Финансы и статистика, 2010.
  4. В.Б. Комягин. Программирование в Excel на языке Visual Basic. М: Радио и связь, 2007.
  5. Н. Николь, Р. Альбрехт. Excel. Электронные таблицы. М: Изд. «ЭКОМ», 2008.
  6. Методические указания к выполнению курсовой работы по информатике (для студентов заочного отделения всех специальностей), под ред. Журова Г. Н., СПбГГИ(ТУ), 2011.

АППРОКСИМАЦИЯ ФУНКЦИИ МЕТОДОМ НАИМЕНЬШИХ

КВАДРАТОВ


1. Цель работы

2. Методические указания

2.2 Постановка задачи

2.3 Методика выбора аппроксимирующей функции

2.4 Общая методика решения

2.5 Методика решения нормальных уравнений

2.7 Методика вычисления обратной матрицы

3. Ручной счет

3.1 Исходные данные

3.2 Система нормальных уравнений

3.3 Решение систем методом обратной матрицы

4. Схема алгоритмов

5. Текст программы

6. Результаты машинного расчета

1. Цель работы

Настоящая курсовая работа является завершающим разделом дисциплины «Вычислительная математика и программирование» и требует от студента в процессе ее выполнения решения следующих задач:

а) практического освоения типовых вычислительных методов прикладной информатики; б) совершенствования навыков разработки алгоритмов и построения программ на языке высокого уровня.

Практическое выполнение курсовой работы предполагает решение типовых инженерных задач обработки данных с использованием методов матричной алгебры, решения систем линейных алгебраических уравнений численного интегрирования. Навыки, приобретаемые в процессе выполнения курсовой работы, являются основой для использования вычислительных методов прикладной математики и техники программирования в процессе изучения всех последующих дисциплин при выполнении курсовых и дипломных проектов.

2. Методические указания

2.2 Постановка задачи

При изучении зависимостей между величинами важной задачей является приближенное представление (аппроксимация) этих зависимостей с помощью известных функций или их комбинаций, подобранных надлежащим образом. Подход к такой задаче и конкретный метод её решения определяются выбором используемого критерия качества приближения и формой представления исходных данных.

2.3 Методика выбора аппроксимирующей функции

Аппроксимирующую функцию выбирают из некоторого семейства функций, для которого задан вид функции, но остаются неопределенными (и подлежат определению) её параметры т.е.

Определение аппроксимирующей функции φ разделяется на два основных этапа:

Подбор подходящего вида функции ;

Нахождение ее параметров в соответствии с критерием МНК.

Подбор вида функции представляет собой сложную задачу, решаемую методом проб и последовательных приближений. Исходные данные, представленные в графической форме (семейства точек или кривые), сопоставляется с семейством графиков ряда типовых функций, используемых обычно для целей аппроксимации. Некоторые типы функций , используемых в курсовой работе, приведены в таблице 1.

Более подробные сведения о поведении функций, которые могут быть использованы в задачах аппроксимации, можно найти в справочной литературе. В большинстве заданий курсовой работы вид аппроксимирующей функции задан.

2.4 Общая методика решения

После того как выбран вид аппроксимирующей функции (или эта функция задана) и, следовательно, определена функциональная зависимость (1), необходимо найти в соответствии с требованиями МНК значения параметров С 1 , С 2 , …, С m . Как уже указывалось, параметры должны быть определены таком образом, чтобы значение критерия в каждой из рассматриваемых задач было наименьшим по сравнению с его значением при других возможных значениях параметров.

Для решения задачи подставим выражение (1) в соответствующее из выражений и проведем необходимые операции суммирования или интегрирования (в зависимости от вида I). В результате величина I, именуемая в дальнейшем критерием аппроксимации, представляется функцией искомых параметров

Последующее сводиться к отысканию минимума этой функции переменных С k ; определение значений С k =C k * , к=1,m, соответствующих этому элементу I, и является целью решаемой задачи.


Типы функций Таблица 1

Вид функции Название функции
Y=C 1 +C 2 ·x Линейная
Y=C 1 +C 2 ·x+C 3 ·x 2 Квадратичная (параболическая)
Y= Рациональная(полином n -й степени)
Y=C 1 +C 2 · Обратно пропорциональная
Y=C 1 +C 2 · Степенная дробно-рациональная
Y= Дробно-рациональная(первой степени)
Y=C 1 +C 2 ·X C3 Степенная
Y=C 1 +C 2 ·a C3 · x Показательная
Y=C 1 +C 2 ·log a x Логарифмическая
Y=C 1 +C 2 ·X n (0 Иррациональная, алгебраическая
Y=C 1 ·sinx+C 2 cosx Тригонометрические функции (и обратные к ним)

Возможны следующие два подхода к решению этой задачи: использование известных условий минимума функции нескольких переменных или непосредственное отыскание точки минимума функции каким – либо из численных методов.

Для реализации первого из указанных подходов воспользуемся необходимым условием минимума функции (1) нескольких переменных, в соответствии с которыми в точке минимума должны быть равны нулю частные производные этой функции по всем ее аргументам

Полученные m равенств следует рассматривать как систему уравнений относительно искомых С 1 , С 2 ,…, С m . При произвольном виде функциональной зависимости (1) уравнения (3) оказывается нелинейным относительно величин C k и их решение требует применение приближенных численных методов.

Использование равенства (3) дают, лишь необходимые, но недостаточные условия минимума (2). Поэтому требуется уточнить, обеспечивают ли найденные значения C k * именно минимум функции . В общем случае такое уточнение выходит за рамки данной курсовой работы, и предлагаемые для курсовой работы задания подобраны так, что найденное решение системы (3) отвечает именно минимуму I. Однако, поскольку величина I неотрицательна (как сумма квадратов) и нижняя её граница есть 0 (I=0), то, если существует решение системы (3) единственно, оно отвечает именно минимуму I.

При представлении аппроксимирующей функции общим выражением (1) соответствующие нормальным уравнениям (3) оказываются нелинейными относительно искомых С к. их решение может быть сопряжено со значительными трудностями. В таких случаях предпочтительным являются непосредственный поиск минимума функции в области возможных значений ее аргументов С к, не связанный с использованием соотношений (3). Общая идея подобного поиска сводиться к изменению значений аргументов С к и вычислению на каждом шаге соответствующего значения функции I до минимального или достаточно близко к нему.

2.5 Методика решения нормальных уравнений

Один из возможных способов минимизации критерия аппроксимации (2) предполагает решение системы нормальных уравнений (3). При выборе в качестве аппроксимирующей функции линейной функции искомых параметров нормальные уравнения представляют собой систему линейных алгебраических уравнений.

Систему n линейных уравнений общего вида:

(4) можно записать посредством матричных обозначений в следующем виде: А·Х=В,

; ; (5)

квадратная матрица А называется матрицей системы , а вектора Х и В соответственно вектором-столбцом неизвестных систем и вектором-столбцом ее свободных членов .

В матричном виде исходную систему n линейных уравнений можно записать и так:

Решение системы линейных уравнений сводиться к отысканию значений элементов вектора-столбца (х i), называемых корнями системы. Чтобы эта система имела единственное решение, входящее в нее n уравнение должно быть линейно независимым. Необходимым и достаточным условием этого является неравенство нулю определителя системы, т.е. Δ=detA≠0.

Алгоритм решения системы линейных уравнений подразделяется на прямые и итерационные. На практике никакой метод не может быть бесконечным. Для получения точного решения итерационные методы требуют бесконечного числа арифметических операций. практически это число приходиться брать конечным и поэтому решение в принципе имеет некоторую ошибку, даже если пренебречь ошибками округлений, сопровождающими большинство вычислений. Что же касается прямых методов, то они даже при конечном числе операций могут в принципе дать точное решение, если оно существует.

Прямые и конечные методы позволяют найти решение системы уравнений за конечное число шагов. Это решение будет точным, если все промежутки вычисления проводятся с ограниченной точностью.

2.7 Методика вычисления обратной матрицы

Один из методов решения системы линейных уравнений (4), записываем в матричной форме А·Х=В, связан с использованием обратной матрицы А -1 . В этом случае решение системы уравнений получается в виде

где А -1 –матрица, определяемая следующим образом.

Пусть А –квадратная матрица размером n х n с ненулевым определителем detA≠0. Тогда существует обратная матрица R=A -1 , определяемая условием A·R=E,

где Е –единичная матрица, все элементы главной диагонали которой равны I, а элементы вне этой диагонали -0, Е=, где Е i –вектор-столбец. Матрица К –квадратная матрица размером n х n.

где Rj –вектор-столбец.

Рассмотрим ее первый столбец R=(r 11 , r 21 ,…, r n 1) T , где Т –означает транспонирование. Нетрудно проверить, что произведение A·R равно первому столбцу E 1 =(1, 0, …, 0) Т единичной матрицы Е, т.е. вектор R 1 можно рассмотреть как решение системы линейных уравнений A·R 1 =E 1. Аналогично m –й столбец матрицы R , Rm, 1≤ m ≤ n, представляет собой решение уравнения A·Rm=Em, где Em=(0, …, 1, 0) T m –й столбец единичной матрицы Е.

Таким образом, обратная матрица R представляет собой набор из решений n систем линейных уравнений

A·Rm=Em , 1≤ m ≤ n.

Для решения этих систем можно применять любые методы, разработанные для решения алгебраических уравнений. Однако метод Гаусса дает возможность решать все эти n систем одновременно, а независимо друг от друга. Действительно, все эти системы уравнений отличаются только правой частью, а все преобразования, которые проводятся в процессе прямого хода метода Гаусса, полностью определяются элементами матрицы коэффициентов (матрицы А). Следовательно, в схемах алгоритмов изменению подлежат только блоки, связанные с преобразованием вектора В. В нашем случае одновременно будут преобразовываться n векторов Em, 1≤ m ≤ n. Результатом решения также будет не один вектор, а n векторов Rm, 1≤ m ≤ n.

3. Ручной счет

3.1 Исходные данные

Xi 0,3 0,5 0,7 0,9 1,1
Yi 1,2 0,7 0,3 -0,3 -1,4

3.2 Система нормальных уравнений

3.3 Решение систем методом обратной матрицы

аппроксимация квадрат функция линейный уравнение

5 3,5 2,6 0,5 5 3,5 2,6 0,5

3,5 2,85 2,43 -0,89 0 0,4 0,61 -1,24

2,56 2,43 2,44 -1,86 0 0,638 1,109 -2,116

0 0,4 0,61 -1,24

0 0 0,136 -0,138

Результаты расчета:

С 1 =1,71; С 2 =-1,552; С 3 =-1,015;

Аппроксимирующая функция:

4 . Текст программы

mass=arrayof real;

mass1=array of real;

mass2=array of real;

X,Y,E,y1,delta: mass;

big,r,sum,temp,maxD,Q:real;

i,j,k,l,num: byte;

Procedure VVOD(var E: mass);

For i:=1 to 5 do

Function FI(i ,k: integer): real;

if i=1 then FI:=1;

if i=2 then FI:=Sin(x[k]);

if i=3 then FI:=Cos(x[k]);

Procedure PEREST(i:integer;var a:mass1;var b:mass2);

for l:= i to 3 do

if abs(a) > big then

big:=a; writeln (big:6:4);

writeln("Перестановкауравнений");

if num<>i then

for j:=i to 3 do

a:=a;

writeln("Введите значения Х");

writeln("__________________");

writeln("‚Введите значения Y");

writeln("___________________");

For i:=1 to 3 do

For j:=1 to 3 do

For k:=1 to 5 do

begin A:= A+FI(i,k)*FI(j,k); write(a:7:5); end;

writeln("________________________");

writeln("МатрицаКоэффициентовAi,j");

For i:=1 to 3 do

For j:=1 to 3 do

write (A:5:2, " ");

For i:=1 to 3 do

For j:=1 to 5 do

B[i]:=B[i]+Y[j]*FI(i,j);

writeln("__________________________");

writeln(‘Матрица Коэффициентов Bi ");

For i:=1 to 3 do

write(B[i]:5:2, " ");

for i:=1 to 2 do

for k:=i+1 to 3 do

Q:=a/a; writeln("g=",Q);

for j:=i+1 to 3 do

a:=a-Q*a; writeln("a=",a);

b[k]:=b[k]-Q*b[i]; writeln("b=",b[k]);

x1[n]:=b[n]/a;

for i:=2 downto 1 do

for j:=i+1 to 3 do

sum:=sum-a*x1[j];

x1[i]:=sum/a;

writeln("__________________________");

writeln ("Значение коэффициентов ");

writeln("_________________________");

for i:=1 to 3 do

writeln(" C",i,"=",x1[i]);

for i:=1 to 5 do

y1[i]:= x1[k]*FI(k,i) + x1*FI(k+1,i) + x1*FI(k+2,i);

delta[i]:=abs (y[i]-y1[i]);

writeln (y1[i]);

for i:=1 to 3 do

write (x1[i]:7:3);

for i:=1 to 5 do

if delta[i]>maxD then maxD:=delta;

writeln ("max Delta= ", maxD:5:3);

5 . Результаты машинного расчета

С 1 =1,511; С 2 =-1,237; С 3 =-1,11;

Вывод

В процессе выполнения курсовой работы я практически освоил типовые вычислительные методы прикладной математики, совершенствовал навыки разработки алгоритмов и построения программ на языках высокого уровня. Получил навыки, являющиеся основой для использования вычислительных методов прикладной математики и техники программирования в процессе изучения всех последующих дисциплин при выполнении курсовых и дипломных проектов.