В одном цикле биосинтеза жирных кислот получаются. Биосинтез жирных кислот, триацилглицеролов и фосфолипидов. Липотропный эффект фосфолипидов. Образование ацетил-SКоА из лимонной кислоты

В одном цикле биосинтеза жирных кислот получаются. Биосинтез жирных кислот, триацилглицеролов и фосфолипидов. Липотропный эффект фосфолипидов. Образование ацетил-SКоА из лимонной кислоты

Синтез жиров в организме происходит главным образом из углеводов, поступающих в избыточном количестве и не используемых для синтеза гликогена. Кроме этого, в синтезе липидов участвуют также и некоторые аминокислоты. По сравнению с гликогеном жиры представляют более компактную форму хранения энергии, поскольку они менее окислены и гидратированы. При этом количество энергии, резервированное в виде нейтральных липидов в жировых клетках, ничем не ограничивается в отличие от гликогена. Центральным процессом в липогенезе является синтез жирных кислот, поскольку они входят в состав практически всех групп липидов. Кроме этого, следует помнить, что основным источником энергии в жирах, способным трансформироваться в химическую энергию молекул АТФ, являются процессы окислительных превращений именно жирных кислот.

Биосинтез жирных кислот

Структурным предшественником для синтеза жирных кислот является ацетил-КоА. Это соединение образуется в матриксе митохондрий преимущественно из пирувата, в результате реакции его окислительного декарбоксили- рования, а также в процессе р-окислсния жирных кислот. Следовательно, углеводородные цепи собираются в ходе последовательного присоединения двухуглсродных фрагментов в форме ацетил-КоА, т. е. биосинтез жирных кислот происходит по той же схеме, но в противоположном направлении по сравнению с р-окислснием.

Однако существует ряд особенностей, различающих эти два процесса, благодаря которым они становятся термодинамически выгодными, необратимыми и по-разному регулируются.

Следует отметить основные отличительные особенности анаболизма жирных кислот.

  • Синтез насыщенных кислот с длиной углеводородной цепи до С 16 (пальмитиновая кислота) в эукариотических клетках осуществляется в цитозоле клетки. Дальнейшее наращивание цепи происходит в митохондриях и частично в ЭПР, где идет превращение насыщенных кислот в ненасыщенные.
  • Термодинамически важным является карбоксилирование ацетил-КоА и превращение его в малонил-КоА (СООН-СН 2 -СООН), на образование которого затрачивается одна макроэргическая связь молекулы АТФ. Из восьми молекул ацетил-КоА, необходимых для синтеза пальмитиновой кислоты, только одна включается в реакции в виде ацетил-КоА, остальные семь в виде малонил-КоА.
  • В качестве донора восстановительных эквивалентов для восстановления кетогруппы до гидроксигруппы функционирует НАДФН, в то время как при обратной реакции в процессе р-окисления восстанавливается НАДН или ФАДН 2 в реакциях дегидрирования ацил-КоА.
  • Ферменты, катализирующие анаболизм жирных кислот, объединены в единый мультиферментный комплекс, получивший название «синтетаза высших жирных кислот».
  • На всех этапах синтеза жирных кислот активированные ацильные остатки связаны с ацилпереносящим белком, а не с коэнзимом А, как в процессе р-окисления жирных кислот.

Транспорт внутримитохондриального ацетил-КоА в цитоплазму. Ацетил-КоА образуется в клетке преимущественно в процессе внутри митохондриальных реакций окисления. Как известно, митохондриальная мембрана непроницаема для ацетил-КоА.

Известны две транспортные системы, обеспечивающие перенос ацетил-КоА из митохондрий в цитоплазму: ацил-карнитиновый механизм, описанный ранее, и цитрат-транспортная система (рис. 23.14).

Рис. 23.14.

В процессе транспорта внутри митохондриального ацетил-КоА в цитоплазму по нитратному механизму вначале происходит его взаимодействие с оксалоацетатом, который превращается в цитрат (первая реакция цикла три- карбоновых кислот, катализируемая ферментом цитратсинтазой; гл. 19). Специфической транслоказой образовавшийся цитрат переносится в цитоплазму, где расщепляется ферментом цитратлиазой при участии коэнзима А на окса- лоацстат и ацетил-КоА. Механизм этой реакции, сопряженной с гидролизом АТФ, приведен ниже:


В связи с тем что для оксалоацетата мембрана митохондрии непроницаема, уже в цитоплазме он восстанавливается посредством НАДН в малат, который при участии специфической транслоказы может вернуться в матрикс митохондрии, где окисляется до оксалатацетата. Таким образом, завершается так называемый челночный механизм транспорта ацетила через метохондриальную мембрану. Часть цитоплазматического малата подвергается окислительному дскарбоксилированию и превращается в пируват с помощью особого «малик»- фермента, коферментом которого является НАДФ + . Восстановленный НАДФН наряду с ацетил-КоА и С0 2 используется в синтезе жирных кислот.

Обратите внимание, что цитрат транспортируется в цитоплазму лишь тогда, когда его концентрация в матриксе митохондрии достаточно велика, например при избытке углеводов, когда цикл трикарбоновых кислот обеспечен ацетил-КоА.

Таким образом, цитратный механизм обеспечивает как транспорт аце- тил-КоА из митохондрии, так и примерно на 50% потребности в НАДФН, который используется в восстановительных реакциях синтеза жирных кислот. Кроме этого, потребности в НАДФН восполняются также за счет пентозофос- фатного пути окисления глюкозы.

20.1.1. Высшие жирные кислоты могут быть синтезированы в организме из метаболитов углеводного обмена. Исходным соединением для этого биосинтеза является ацетил-КоА , образующийся в митохондриях из пирувата - продукта гликолитического распада глюкозы. Место синтеза жирных кислот - цитоплазма клеток, где имеется мультиферментный комплекссинтетаза высших жирных кислот . Этот комплекс состоит из шести ферментов, связанных с ацилпереносящим белком , который содержит две свободные SH-группы (АПБ-SH). Синтез происходит путём полимеризации двууглеродных фрагментов, конечным продуктом его является пальмитиновая кислота - насыщенная жирная кислота, содержащая 16 атомов углерода. Обязательными компонентами, участвующими в синтезе, являются НАДФН (кофермент, образующийся в реакциях пентозофосфатного пути окисления углеводов) и АТФ.

20.1.2. Ацетил-КоА поступает из митохондрий в цитоплазму при помощи цитратного механизма (рисунок 20.1). В митохондриях ацетил-КоА взаимодействует с оксалоацетатом (фермент -цитратсинтаза ), образующийся цитрат переносится через митохондриальную мембрану при помощи специальной транспортной системы. В цитоплазме цитрат реагирует с HS-КоА и АТФ, вновь распадаясь на ацетил-КоА и оксалоацетат (фермент - цитратлиаза ).

Рисунок 20.1. Перенос ацетильных групп из митохондрий в цитоплазму.

20.1.3. Начальной реакцией синтеза жирных кислот является карбоксилирование ацетил-КоА с образованием малонил-КоА (рисунок 20.2). Фермент ацетил-КоА-карбоксилаза активируется цитратом и ингибируется КоА-производными высших жирных кислот.


Рисунок 20.2. Реакция карбоксилирования ацетил-КоА.

Затем ацетил-КоА и малонил-КоА взаимодействуют с SH-группами ацилпереносящего белка (рисунок 20.3).


Рисунок 20.3. Взаимодействие ацетил-КоА и малонил-КоА с ацилпереносящим белком.

Рисунок 20.4. Реакции одного цикла биосинтеза жирных кислот.

Продукт реакции взаимодействует с новой молекулой малонил-КоА и цикл многократно повторяется вплоть до образования остатка пальмитиновой кислоты.

20.1.4. Запомните основные особенности биосинтеза жирных кислот по сравнению с β-окислением:

  • синтез жирных кислот в основном осуществляется в цитоплазме клетки, а окисление - в митохондриях;
  • участие в процессе связывания СО2 с ацетил-КоА;
  • в синтезе жирных кислот принимает участие ацилпереносящий белок, а в окислении - коэнзим А;
  • для биосинтеза жирных кислот необходимы окислительно-восстановительные коферменты НАДФН, а для β-окисления - НАД+ и ФАД.

Синтез жиров осуществляется главным образом из углеводов, поступивших в избыточном количестве и не используемых для пополнения запаса гликогена. Кроме того, в синтезе участвуют и некоторые аминокислоты. Накоплению жиров способствует и избыток пищи.

Строительным блоком для синтеза жирных кислот в цитозоле клетки служит ацетил-КоА, который в основном поступает из митохондрий. Ацетил Ко-А самостоятельно не может диффундировать в цитозоль клетки, так как митохондриальная мембрана непроницаема для него. Вначале внутримитохондриальный ацетил-КоА взаимодействует с оксалоацетатом, в результате чего образуется цитрат. Реакция катализируется ферментом цитрат-синтазой. Образовавшийся цитрат переносится через мембрану митохондрий в цитозоль при помощи специальной трикарбоксилаттранспортирующей системы.

В цитозоле цитрат реагирует с НS-КоА и АТФ, вновь распадаясь на ацетил-КоА и оксалоацетат. Эта реакция катализируется АТФ-цитрат-лиазой. Уже в цитозоле оксалоацетат при участии цитозольной малатдегидрогеназы восстанавливается до малата. Последний при помощи дикарбоксилаттранспортирующей системы возвращается в митохондриальный матрикс, где окисляется до оксалоацетата.

Имеются два типа синтазных комплексов, катализирующих биосинтез жирных кислот, оба находятся в растворимой части клетки. У бактерий, растений и низших форм животных, таких как эвглена, все индивидуальные ферменты синтазной системы находятся в виде автономных полипептидов; ацильные радикалы связаны с одним из них, получившим название «ацилпереносящий белок» (АПБ). У дрожжей, млекопитающих и птиц синтазная система представляет собой полиферментный комплекс, который нельзя разделить на компоненты, не нарушив его активности, а АПБ является частью этого комплекса. Как АПБ бактерий, так и АПБ полиферментного комплекса содержит пантотеновую кислоту в виде 4 / -фосфопантетеина. В синтетазной системе АПБ выполняет роль КоА. Синтазный комплекс, катализирующий образование жирных кислот, является димером. У животных мономеры идентичны и образованы одной полипептидной цепью, включающей 6 ферментов, катализирующих биосинтез жирных кислот, и АПБ с реакционноспособной SH-группой, принадлежащей 4 / -фосфопантетеину. В непосредственной близости от этой группы расположена другая сульфгидрильная группа, принадлежащая остатку цистеина, входящего в состав 3-кетоацил-ситазы (конденсирующего фермента), которая входит в состав другого мономера. Поскольку для проявления ситазной активности необходимо участие обеих сульфгидрильных групп, синтазный комплекс активен только в виде димера.

Первой реакций биосинтеза жирных кислот является карбоксилирование ацетил-КоА, для чего требуется бикарбонат, АТФ, ионы марганца. Катализирует реакцию ацетил-КоА-карбоксилаза. Фермент относится к классу лигаз и содержит в качестве простетической группы биотин.

Реакция протекает в два этапа: I – карбоксилирование биотина с участием АТФ и II-перенос карбоксильной группы на ацетил-КоА, в результате чего образуется малонил-КоА:

Малонил-КоА переходит в комплекс с SH-АПБ при участии фермента малонил-трансацилазы. В следующей реакции происходит взаимодействие ацетил-S-АПБ и малонил-S-АПБ. Происходит выделение карбоксильной группы малонил-S-АПБ в виде СО 2 . Ацетоацетил-S-АПБ при участии НАДФ + -зависимой редуктазы восстанавливается с образованием b-гидроксибутирил-S-АПБ. Далее реакция гидратации b-гидроксибутирил-S-АПБ приводит к образованию кротонил-b-гидроксибутирил-S-АПБ, который восстанавливается НАДФ + -зависимой редуктазой с образованием бутирил-S-АПБ. Далее рассмотренный цикл реакций повторяется: полученный бутирил-S-АПБ реагирует с другой молекулой малонил-S-АПБ с выделением молекулы СО 2 (рис. 42).

Рис. 42. Биосинтез жирных кислот

В случае синтеза пальмитиновой кислоты (С 16) необходимо повторение шести реакций, началом каждого из циклов будет присоединение молекулы малонил-S-АПБ к карбоксильному концу синтезируемой цепи жирной кислоты. Таким образом, присоединяя одну молекулу малонил-S-АПБ, углеродная цепь синтезируемой пальмитиновой кислоты увеличивается на два углеродных атома.


БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Кафедра ЭТТ
РЕФЕРАТ
На тему:
«Окисление ненасыщенных жирных кислот. Биосинтез холестерина. Мембранный транспорт»

МИНСК, 2008
Окисление ненасыщенных жирных кисл от.
В принципе происходит также как и насыщенных, однако имеются особенности. Двойные связи природных ненасыщенных жирных кислот имеют цис-конфигурацию, а в КоА эфирах ненасыщенных кислот, являющихся промежуточными продуктами при окислении, двойные связи имеют транс-конфигурацию. В тканях есть фермент, изменяющий конфигурацию двойной связи цис- в транс-.
Метаболизм кетоновых тел.
Под термином кетоновые (ацетоновые) тела подразумевают ацетоуксусную кислоту, -гидроксимасляную и ацетон. Кетоновые тела образуются в печени в результате деацилирования ацетоацетил КоА. Имеются данные, указывающие на важную роль кетоновых тел в поддержании энергетического гомеостаза. Кетоновые тела - своего рода поставщики топлива для мышц, мозга и почек и действуют как часть регуляторного механизма, предотвращающая мобилизацию жирных кислот из депо.
Биосинтез липидов.
Биосинтез липидов из глюкозы является важным звеном обмена у большинства организмов. Глюкоза, в количествах, превышающих непосредственные энергетические потребности может являться строительным материалом для синтеза жирных кислот и глицерина. Синтез жирных кислот в тканях протекает в цитоплазме клетки. В митохондриях в основном происходит удлинение существующих цепей жирных кислот.
Внемитохондриальный синтез жирных кислот.
Строительным блоком для синтеза жирных кислот в цитоплазме клетки служит ацетил КоА, который в основном происходит из митохондриального. Для синтеза необходимо наличие в цитоплазме углекислого газа и иона бикарбоната и цитрат. Митохондриальный ацетил КоА не может диффундировать в цитоплазму клетки, т.к. митохондриальная мембрана непроницаема для него. Митохондриальный ацетил КоА взаимодействует с оксалоацетатом, образуя цитрат и проникает в цитоплазму клетки, где расщепляется до ацетил КоА и оксалоацетата.
Имеется еще один путь проникновения ацетил КоА через мембрану - с участием карнитина.
Этапы биосинтеза жирных кислот :
Образование малонил КоА, путем связывания углекислого газа(биотин-фермент и АТФ) с коэнзимом А. Для этого необходимо наличие НАДФН 2 .
Образование ненасыщенных жирных кислот:
В тканях млекопитающих присутствуют 4 семейства ненасыщенных жирных кислот -
1.пальмитоолеиновая, 2.олеиновая, 3. линолевая,4.линоленовая
1 и 2 синтезируются из пальмитиновой и стеариновой кислот.
Биосинтез триглицеридов.
Синтез триглицеридов происходит из глицерина и жирных кислот (стеариновой, пальмитиновой, олеиновой). Путь биосинтеза триглицеридов происходит через образование глицерол-3-фосфата.
Глицерол-3-фосфат ацилируется и образуется фосфатидная кислота. Далее происходит дефосфорилирование фосфатидной кислоты и образование 1,2-диглицерида. Затем происходит этерификация молекулой ацил КоА и образование триглицерида. Глицерофосфолипиды синтезируются в эндоплазматической цепи.
Биосинтез насыщенных жирных кислот.
Непосредственным предшественником двууглеродных единиц в синтезе жирных кислот служит малонил КоА.
Полный синтез насыщенных жирных кислот катализируется особым синтетазным комплексом, состоящим из 7 ферментов. Синтетазная система, катализируюшая синтез жирных кислот в растворимой фракции цитоплазмы ответственна за следующую суммарную реакцию при которой одна молекула ацетил КоА и 7 молекул малонил КоА конденсируются с образованием одной молекулы пальмитиновой кислоты (восстановление осуществляется за счет НАДФН). Единственная молекула ацетил КоА, необходимая для реакции служит инициатором.
Образование малонил КоА:
1. Цитрат способен проходить через митохондриальную мембрану в цитоплазму. Митохондриальный ацетил КоА переносится на оксалоацетат с образованием цитрата, который может проходить через митохондриальную мембрану в цитоплазму с помощью системы переноса. В цитоплазме цитрат расщепляется до ацетил КоА, который взаимодействуя с углекислым газом превращается в малонил КоА. Лимитирующий фермент всего процесса синтеза жирных кислот - ацетил КоА-карбоксилаза.
2. Ацилпереносящий белок в синтезе жирных кислот служит своего рода якорем, к которому в ходе реакций образования алифатической цепи присоединяются ацильные промежуточные продукты. В митохондриях молекулы насыщенных жирных кислот удлиняются в форме эфиров КоА путем последовательного добавления КоА. Ацильные группы ацетил КоА и малонил КоА переносятся на тиоловые группы ацил-переносящего белка.
3. После конденсации этих двухуглеродных фрагментов идет их восстановление с образованием высших насыщенных жирных кислот.
Последующие этапы синтеза жирных кислот в цитоплазме сходны с реакциями обратными реакциям митохондриального -окисления. Осуществление этого процесса со всеми промежуточными продуктами прочно связано с большим многоферментным комплексом - синтетазой жирных кислот.
Регуляция обмена жирных кислот.
Процессы обмена жиров в организме регулируются нейрогуморальным путем. Одновременно ЦНС и кора головного мозга осуществляют согласованность различных гормональных влияний. Кора головного мозга оказывает трофическое влияние на жировую ткань либо через симпатическую и парасимпатическую систему, либо через эндокринные железы.
Поддержание определенного соотношения между катаболизмом и анаболизмом жирных кислот в печени связано с воздействием метаболитов внутри клетки, а также влиянием гормональных факторов и потребляемой пищи.
При регуляции -окисления первостепенное значение имеет доступность субстрата. Поступление жирных кислот в клетки печени обеспечивается:
1. захватом жирных кислот из жировой ткани, регуляция этого процесса осуществляется гормонами.
2. захват жирных кислот (обусловленных содержанием жиров в пище).
3. высвобождение жирных кислот под действием липазы из триглицеридов печени.
Второй контролирующий фактор - уровень запаса энергии в клетке (соотношение АДФ и АТФ). Если АДФ много (клеточные резервы энергии малы), то протекают реакции сопряжения, что способствует синтезу АТФ. Если содержание АТФ повышено, вышеупомянутые реакции тормозятся, накапливающиеся жирные кислоты используются для биосинтеза жиров и фосфолипидов.
Способность цикла лимонной кислоты катаболизировать ацетил КоА, образующийся при -окислении имеет важное значение в реализации общего энергетического потенциала катаболизма жирных кислот, а также нежелательного накопления кетоновых тел (ацетоуксусная кислота, -оксибутират и ацетон).
Инсулин усиливает биосинтез жирных кислот, превращение углеводов в жиры. Адреналин, тироксин и гормон роста активируют распад (липолиз) жира.
Снижение выработки гормонов гипофиза и половых гормонов приводит к стимуляции синтеза жиров.
Нарушения липидного обмена
1.Нарушение процессов всасывания жиров
а) недостаточность поступления панкреатической липазы
б)нарушение поступления в кишечник желчи
в)нарушение желудочно-кишечного тракта (повреждение эпителиального покрова).
2. Нарушение процессов перехода жира из крови в ткани - нарушается переход жирных кислот из хиломикронов плазмы крови в жировые депо. Это наследственное заболевание, связанное с отсутствием фермента.
3. Кетонурия и кетонемия- при голодании у лиц с диабетом содержание кетоновых тел повышено - это кетонемия. Оно состояние сопровождается кетонурией (наличие кетоновых тел в моче). Ввиду необычно высокой концентрации кетоновых тел в притекающей крови мышцы и другие органы не справляются с их окислением.
4. Атеросклероз и липопротеиды. Доказана ведущая роль определенных классов липопротеидов в патогенезе атеросклероза. Формирование липидных пятен и бляшек сопровождается глубокими дистрофическими изменениями в пределах сосудистой стенки.
Холестерин
У млекопитающих большая часть (около 90%) холестерина синтезируется в печени. Большая часть его (75 %) используется при синтезе так называемых желчных кислот, помогающих перевариванию липидов, поступающих с пищей в кишечнике. Они делают их более доступными для гидролитических ферментов - липаз. Основной желчной кислотой является холевая кислота. Холестерин является также матаболическим предшественником других важных стероидов, многие из которых выступают в виде гормонов.: альдостерона и кортизона, эстрона, тестостерона и андростерона.
Нормальный уровень холестерина в плазме крови в пределах 150-200 мг/мл. Высокий уровень может привести к отложению холестериновых бляшек в аорте и мелких артериях, это состояние известно под названием артериосклероза (атеросклероза). В конечном счете он способствует нарушению сердечной деятельности. Поддержание нормального уровня холестерина осуществляется путем организации правильного режима питания, а также in vivo регуляцией пути ацетил-КоА. Один из способов снижения высокого уровня холестерина в крови заключается в приеме внутрь соединений, уменьшающих способность организма синтезировать холестерин. Холестерин синтезируется в печени и плазме крови, упаковывается в липопротеиновые комплексы, которые переносятся в другие клетки. Проникновение холестерина в клетку зависит от наличия мембранных рецепторов, связывающих такие комплексы, которые проникают в клетку путем эндоцитоза и затем лизосомные ферменты освобождают холестерин внутри клетки. У пациентов с высоким уровнем холестерина в крови были обнаружены дефектные рецепторы, это - генетический дефект.
Холестерин является предшественником многих стероидов, таких как стероиды кала, желчные кислоты и стероидные гормоны. При образовании стероидных гормонов из холестерина сначала синтезируется промежуточный продукт прегненолон, который служит предшественником прогестерона - гормона плаценты и желтого тела, мужских половых гормонов (тестостерона), женских половых гормонов (эстрона) и гормонов коры надпочечников (кортикостерона).
Главным исходным материалом для биосинтеза этих гормонов является аминокислота тирозин. Ее источник в клетках -
1. Протеолиз
2. Образование из фенилаланина (незаменимой АК)
Биосинтез стероидных гормонов несмотря на разнообразный спектр их действия, является единым процессом.
Центральное положение в биосинтезе всех стероидных гормонов занимает прогестерон.
Имеются 2 пути его синтеза:
Из холестерина
Из ацетата
В регуляции скоростей биосинтеза отдельных стероидных гормонов важнейшую роль играют тропные гормоны гипофиза. АКТГ стимулирует биосинтез кортикальных гормонов надпочечников.
Имеются 3 причины расстройства биосинтеза и выделения специфических гормонов:
1. Развитие патологического процесса в самой эндокринной железе.
2. Нарушение регуляторных влияний на процессы со стороны ЦНС.
3. Нарушение координации деятельности отдельных желез внутренней секреции.
Биосинтез холестерина .
Этот процесс насчитывает 35 стадий.
Можно выделить 3 основные:
1. Превращение активного ацетата в мевалоновую кислоту
2. Образование сквалена
3. Окислительная циклизация сквалена в холестерин.
Холестерин является предшественником многих стероидов:
Стероидов кала, желчных кислот, стероидных гормонов. Распад холестерина - это превращение его в желчные кислоты в печени.
Показано, что регуляция биосинтеза холестерина осуществляется путем изменения синтеза и активности -гидрокси--метил глутарил КоА-редуктазы. Этот фермент локализован в мембранах эндоплазматической сети клетки. Его активность зависит от концентрации холестерина, приводит к снижению активности фермента. Регуляция активности редуктазы холестерином - пример регуляции ключевого фермента конечным продуктом по принципу отрицательной обратной связи.
Существует и второй путь биосинтеза мевалоновой кислоты.
Два автономных пути имеют значение для внутриклеточного разграничения биосинтеза холестерина необходимого для внутриклеточных нужд (синтез липопротеидов клеточных мембран) от холестерина, идущего на образование жирных кислот. В составе липопротеидов холестерин покидает печень и поступает в кровь. Содержание общего холестерина в плазме крови 130-300 мг/мл.
Молекулярные компоненты мембран.
Большинство мембран состоит примерно из 40% липида и 60% белка. Липидная часть мембран содержит преимущественно полярные липиды различных типов, практически все количество полярных липидов клетки сосредоточено в ее мембранах.
Большинство мембран содержит мало триацилглицеринов и стеринов, исключением в этом смысле являются плазматические мембраны клеток высших животных с характерным для них высоким содержанием холестерина.
Соотношение между различными липидами постоянно для каждого данного типа мембран клетки и, следовательно, определяются генетически. Большинство мембран характеризуется одинаковым соотношением липида и белка. Почти все мембраны легко проницаемы для воды и для нейтральных липофильных соединений, в меньшей степени проницаемы для полярных веществ, таких как сахара и амиды и совсем плохо проницаемы для небольших ионов, таких как натрий или хлор.
Для большинства мембран характерно высокое электрическое сопротивление. Эти общие свойства послужили основой для создания первой важной гипотезы относительно структуры биологических мембран - гипотезы элементарной мембраны. Согласно гипотезе, элементарная мембрана состоит из двойного слоя смешанных полярных липидов, в котором углеводородные цепи обращенных внутрь и образуют непрерывную углеводородную фазу, а гидрофильные головы молекул направлены наружу, каждая из поверхностей двойного слоя липидов покрыта мономолекулярным слоем белка, полипептидные цепи которого находятся в вытянутой форме. Общая толщина элементарной мембраны - 90 ангстрем, а толщина двойного слоя липидов - 60-70- ангстрем.
Структурное многообразие мембран больше, чем исходя из гипотезы элементарной мембраны.
Другие модели мембран:
1. Структурный белок мембраны находится внутри двойного слоя липидов, а углеводородные хвосты липидов проникают в свободные и т.д.................

Образование малонил-КоА

Первая реакция синтеза ЖК -- превращение ацетил-КоА в малонил-КоА. Это регуляторная реакция в синтезе ЖК катализируется ацетил-КоА-карбоксилазой.

Ацетил-КоА-карбоксилаза состоит из нескольких субъединиц, содержащих биотин.

Реакция протекает в 2 стадии:

  • 1) СО 2 + биотин + АТФ > биотин-СООН + АДФ + Фн
  • 2) ацетил-КоА + биотин-СООН > малонил-КоА + биотин

Ацетил-КоА-карбоксилаза регулируется несколькими способами:

  • 1) Ассоциация/диссоциация комплексов субъединиц фермента. В неактивной форме ацетил-КоА-карбоксилаза представляет собой комплексы, состоящих из 4 субъединиц. Цитрат стимулирует объединение комплексов, в результате чего активность фермента увеличивается. Пальмитоил-КоА вызывает диссоциацию комплексов и снижение активности фермента;
  • 2) Фосфорилирование/дефосфорилирование ацетил-КоА-карбоксилазы. Глюкагон или адреналин через аденилатциклазную систему стимулируют фосфорилирование субъединиц ацетил-КоА карбоксилазы, что приводит к ее инактивации. Инсулин активирует фосфопротеинфосфатазу, ацетил-КоА карбоксилаза дефосфорилируется. Затем под действием цитрата происходит полимеризация протомеров фермента, и он становится активным;
  • 3) Длительное потребление богатой углеводами и бедной липидами пищи приводит к увеличению секреции инсулина, который индукцирует синтез ацетил-КоА-карбоксилазы, пальмитатсинтазы, цитратлиазы, изоцитратдегидрогеназы и ускоряет синтез ЖК и ТГ. Голодание или богатая жирами пища приводит к снижению синтеза ферментов и, соответственно, ЖК и ТГ.

Образование пальмитиновой кислоты

После образования малонил-КоА синтез пальмитиновой кислоты продолжается на мультиферментном комплексе -- синтазе жирных кислот (пальмитоилсинтетазе) .

Пальмитоилсинтаза - это димер, состоящий из двух идентичных полипептидных цепей. Каждая цепь имеет 7 активных центров и ацилпереносящий белок (АПБ). В каждой цепи есть 2 SH-гpyппы: одна SH-гpyппa принадлежит цистеину, другая -- остатку фосфопантетеиновой кислоты. SH-группа цистеина одного мономера расположена рядом с SH-группой 4-фосфопантетеината другого протомера. Таким образом, протомеры фермента расположены «голова к хвосту». Хотя каждый мономер содержит все каталитические центры, функционально активен комплекс из 2 протомеров. Поэтому реально синтезируются одновременно 2 ЖК.

Этот комплекс последовательно удлиняет радикал ЖК на 2 атома С, донором которых служит малонил-КоА.

Реакции синтеза пальмитиновой кислоты

  • 1) Перенос ацетила с КоА на SH-группу цистеина ацетилтрансацилазным центром;
  • 2) Перенос малонила с КоА на SH-группу АПБ малонилтрансацилазным центром;
  • 3) Кетоацилсинтазным центром ацетильная группа конденсируется с малонильной с образованием кетоацила и выделением СО 2 .
  • 4) Кетоацил восстанавливается кетоацил-редуктазой до оксиацила;
  • 5) Оксиацил дегидратируется гидратазой в еноил;
  • 6) Еноил восстанавливается еноилредуктазой до ацила.

В результате первого цикла реакций образуется ацил с 4 атомами С (бутирил). Далее бутирил переносится из позиции 2 в позицию 1 (где находился ацетил в начале первого цикла реакций). Затем бутирил подвергается тем же превращениям и удлиняется на 2 атома С (от малонил-КоА).

Аналогичные циклы реакций повторяются до тех пор, пока не образуется радикал пальмитиновой кислоты, который под действием тиоэстеразного центра гидролитически отделяется от ферментного комплекса, превращаясь в свободную пальмитиновую кислоту.

Суммарное уравнение синтеза пальмитиновой кислоты из ацетил-КоА и малонил-КоА имеет следующий вид:

CH 3 -CO-SKoA + 7 HOOC-CH 2 -CO-SKoA + 14 НАДФН 2 > C 15 H 31 COOH + 7 СО 2 + 6

Н 2 О + 8 HSKoA + 14 НАДФ +



© 2024 yanaorgo.ru - Сайт о массаже. В здоровом теле, здоровый дух