Строение ядра клетки и его функции. Как связаны между собой хромосомы, ДНК, гены? Клеточное ядро. Хромосомы

Строение ядра клетки и его функции. Как связаны между собой хромосомы, ДНК, гены? Клеточное ядро. Хромосомы

21.04.2020

4.1. Клеточное ядро

4.1.1. Общие представления

4.1.1.1. Функции ядра 4.1.1.2. Ядерная ДНК 4.1.1.3. Выявление транскрипции в клеточных ядрах 4.1.1.4. Структура ядра

4.1.2. Хроматин

4.1.2.1. Эу- и гетерохроматин 4.1.2.2. Половой хроматин 4.1.2.3. Нуклеосомная организация хроматина

4.1.3. Ядрышки

4.1.3.1. Строение 4.1.3.2. Выявление при световой микроскопии

4.1.4. Ядерная оболочка и матрикс

4.1.4.1. Ядерная оболочка 4.1.4.2. Ядерный матрикс

4.2. Деление клеток

4.2.1. Два способа деления

4.2.2. Клеточный цикл

4.2.2.1. Клеточный цикл постоянно делящихся клеток 4.2.2.2. Клеточный цикл для клеток, прекращающих деление 4.2.2.3. Пример - клеточный цикл клеток эпидермиса 4.2.2.4. Феномен полиплоидии

4.2.3. Митоз

4.2.3.1. Стадии митоза 4.2.3.2. Просмотр препарата: митозы в тонкой кишке 4.2.3.3. Просмотр препарата: митозы в культуре животных клеток 4.2.3.4. Метафазные хромосомы 4.2.3.5. Уровни укладки хромосом

4.1. Клеточное ядро

4.1.1. Общие представления

4.1.1.1. Функции ядра

Функции ядра в соматичес- ких клетках

а) Ядро - важнейшая органелла клетки, содержащая наследственный материал - ДНК.

б) Поэтому в соматических клетках оно выполняет 2 ключевые функции:

сохраняет наследственный материал для передачи дочерним клеткам (образующимся при делении исходной);

обеспечивает использование информации ДНК в самой клетке - в том объёме, в каком это необходимо данной клетке при данных условиях.

Информация, записанная в ДНК

Конкретно, ДНК каждой клетки содержит следующую информацию:

о первичной структуре (последовательности аминокислот) всех белков всех клеток организма (исключение - некоторые белки митохондрий, кодируемые митохондриальной ДНК),

о первичной структуре (последовательности нуклеотидов) примерно 60 видов транспортных РНК и 5 видов рибосомных РНК,

а также, видимо, о программе использования данной информации в разных клетках в разные моменты онтогенеза.

Последова- тельность передачи информации

а) Передача информации о структуре белка включает 3 этапа.-

Транскрипция. – В ядре на участке ДНК как на матрице образуется матричная РНК (мРНК); точнее, её предшественник (пре-мРНК).

Созревание мРНК (процессинг) и перемещение её в цитоплазму.

Трансляция. - В цитоплазме на рибосомах происходит синтез полипептидной цепи в соответствии с последовательностью нуклеотидных триплетов (кодонов) в мРНК.

б) Т.к. среди белков около 50 % являются ферментами, то их образование приводит, в конечном счёте, к синтезу и всех прочих (небелковых) компонентов клетки и межклеточного вещества.

Процессы, происходя- щие в ядре

а) Итак, вторая ключевая функция ядра (использование информации ДНК для обеспечения клеточной жизнедеятельности) реализуется за счёт того, что в нём проходят

транскрипция определённых участков ДНК (синтез пре-мРНК), созревание мРНК, синтез и созревание тРНК и рРНК.

б) Кроме того, в ядре

формируются субъединицы рибосом (из рРНК и поступающих из цитоплазмы рибосомальных белков).

в) Наконец, перед делением клетки (кроме второго деления мейоза) в ядре происходит

репликация (удвоение) ДНК,

причём в дочерних молекулах ДНК

одна из цепей является старой, а вторая - новой (синтезированной на первой по принципу комплементарности).

Функции ядра в половых клетках

В половых клетках (сперматозоидах и яйцеклетках) функция ядер несколько иная. Это

подготовка наследственного материала для объединения с аналогичным материалом половой клетки противоположного пола.

4.1.1.2. Ядерная днк

I. Выявление ДНК

1. а) Обнаружить ДНК в клеточных ядрах можно с помощью метода Фёльгена (п. 1.1.4). –

б) При этой окраске

ДНК окрашивается в вишнёвый цвет , а прочие вещества и структуры - в зелёный .

2. а) На снимке мы видим, что, действительно, в ядрах (1) клеток содержится ДНК.

б) Исключения составляютядрышки (2): в них содержание ДНК низкое, отчего они, как и цитоплазма (3), имеют на препарате зелёный цвет .

1. Препарат - дезоксирибонуклеиновая кислота (ДНК) в ядре клетки. Окраска по методу Фёльгена.

Полный размер

II. Характеристики ядерной ДНК

4.1.1.3. Выявление транскрипции в клеточных ядрах

I. Принцип метода

Мечение уридином

а) Чтобы выявить транскрипционную активность клеточных ядер, животным in vivo вводят в кровь раствор радиоактивного уридина.

б) Данное соединение в клетках превращается в Н 3 –УТФ (уридинтрифосфат) - один из четырёх нуклеотидов, используемых при синтезе РНК.

в) Поэтому вскоре после введения метки она оказывается в составе новосинтезированных цепей РНК.

Замечание. - При образовании ДНК вместо уридилового нуклеотида используется тимидиловый; так что Н 3 –УТФ включается только в РНК.

Последу- ющие процедуры

а) Через определённое время животных забивают и готовят срезы изучаемых тканей.

б) Срезы покрывают фотоэмульсией. - В местах нахождения радиоактивного соединения происходит разложение фотоэмульсии и образуются гранулы серебра (2) . Т.е. последние являются маркёрами радиоактивной метки.

в) Затем срез (после промывки и закрепления) красят как обычный гистологический препарат.

II. Препарат

1. а) На представленном снимке мы видим, что меченое вещество сосредоточено, главным образом, в ядрах (1) клеток.

б) Это и отражает тот факт, что

в ядрах происходит синтез всех видов РНК - мРНК, тРНК и рРНК.

2. Наличие метки в других частях препарата объясняется, например, тем, что

какая-то часть меченого вещества (Н 3 –уридина) не успела включиться в состав РНК,

а какая-то часть новообразованной РНК, наоборот, уже успела выйти из ядра в цитоплазму.

2. Препарат - включение Н 3 –уридина в РНК. Окраска гематоксилин-эозином.

Полный размер

4.1.1.4. Структура ядра

1. а) А здесь - обычный препарат печени. б) В печёночных клетках хорошо выявляются округлые ядра (1). б) Последние окрашиваются гематоксилином в фиолетовый цвет.

2. а) В свою очередь, в ядрах можно видеть 3 основных элемента:

ядерную оболочку (2), глыбки хроматина (3), округлые ядрышки (4).

б) Другие компоненты ядра -

ядерный матрикс и ядерный сок -

формируют ту среду, в которой находятся хроматин и ядрышко.

3. Препарат - структура клеточного ядра. Клетки печени. Окраска гематоксилин-эозином.

Полный размер

3. Кроме ядер, обратим внимание на оксифильную, слегка зернистую,цитоплазму (5) и не очень заметные границы (6) клеток.

Теперь рассмотрим более подробно строение ядерных структур.

ДНК является универсальным источником и хранителем наследственной информации, которая записана с помощью специальной последовательности нуклеотидов, она определяет свойства всех живых организмов.

Средняя молекулярная масса нуклеотида принимается равной 345, а количество нуклеотидных остатков может достигать нескольких сот, тысяч и даже миллионов. ДНК в основной своей массе находится в ядрах клеток. Немного содержится в хлоропластах и митохондриях. Однако ДНК ядра клетки - это не одна молекула. Она состоит из множества молекул, которые распределены по разным хромосомам, их количество меняется в зависимости от организма. Это и есть особенности строения ДНК.

История открытия ДНК

Строение и функции ДНК были открыты Джеймсом Уотсоном и Френсисом Криком, им даже была вручена Нобелевская премия в 1962 году.

Но впервые обнаружил нуклеиновые кислоты швейцарский ученый Фридрих Иоганн Мишер, работавший в Германии. В 1869 году он изучал животные клетки - лейкоциты. Для их получения использовал повязки с гноем, достававшиеся ему из больниц. Из гноя Мишер вымывал лейкоциты, а из них выделял белок. В ходе этих исследований ученому удалось установить, что в лейкоцитах кроме белков имеется еще что-то, какое-то неизвестное на тот момент вещество. Оно представляло собой нитевидный или хлопьевидный осадок, который выделялся, если создать кислую среду. Осадок сразу растворялся при добавлении щелочи.

Ученый с помощью микроскопа обнаружил, что при отмывании лейкоцитов с помощью соляной кислоты от клеток остаются ядра. Тогда он сделал заключение, что в ядре есть неизвестное вещество, названное им нуклеином (слово nucleus в переводе означает ядро).

Проведя химический анализ, Мишер выяснил, что новое вещество в своем составе имеет углерод, водород, кислород и фосфор. В то время фосфорорганических соединений было известно немного, поэтому Фридрих решил, что обнаружил новый класс соединений, находящихся в ядре клетки.

Таким образом, в XIX веке было открыто существование нуклеиновых кислот. Однако в то время никто не мог даже подумать о том, какая важная роль им принадлежит.

Вещество наследственности

Строение ДНК продолжали исследовать, и в 1944 году группа бактериологов под руководством Освальда Эвери получила доказательства того, что эта молекула заслуживает серьезного внимания. Ученый на протяжении многих лет занимался изучением пневмококков, организмов, которые вызывали пневмонию или заболевание легких. Эвери проводил опыты, смешивая пневмококки, вызывающие заболевание, с теми, которые безопасны для живых организмов. Сначала болезнетворные клетки убивали, а после добавляли к ним те, которые заболеваний не вызывают.

Результаты исследований поразили всех. Были такие живые клетки, которые после взаимодействия с мертвыми научались вызывать болезнь. Ученый выяснил природу вещества, которое участвует в процессе передачи информации живым клеткам от мертвых. Молекула ДНК и оказалась этим веществом.

Строение

Итак, необходимо разобраться с тем, какое строение имеет молекула ДНК. Открытие ее структуры стало значимым событием, это привело к образованию молекулярной биологии - новой отрасли биохимии. ДНК в больших количествах находится в ядрах клеток, однако размеры и количество молекул зависят от вида организма. Установлено, что ядра клеток млекопитающих содержат много этих клеток, они распределены по хромосомам, их насчитывается 46.

Изучая строение ДНК, в 1924 году Фельген впервые установил ее локализацию. Доказательства, полученные в ходе экспериментов, показали, что ДНК находится в митохондриях (1-2%). В других местах эти молекулы могут находиться при вирусной инфекции, в базальных тельцах, а также в яйцеклетках некоторых животных. Известно, что чем сложнее организм, тем масса ДНК больше. Количество молекул, находящихся в клетке, зависит от функции и составляет обычно 1-10%. Меньше всего их находится в миоцитах (0,2%), больше - в половых клетках (60%).

Строение ДНК показало, что в хромосомах высших организмов они связаны с простыми белками - альбуминами, гистонами и прочими, которые все вместе образуют ДНП (дезоксирибонуклеопротеид). Обычно большая молекула нестойкая, и для того чтобы она оставалась целой и неизменной в ходе эволюции, создана так называемая репарирующая система, которая состоит из ферментов - лигаз и нуклеаз, отвечающих за «ремонт» молекулы.

Химическое строение ДНК

ДНК является полимером, полинуклеотидом, состоящим из огромного числа (до десятков тысяч миллионов) мононуклеотидов. Строение ДНК имеет следующий вид: мононуклеотиды содержат азотистые основания - цитозин (Ц) и тимин (Т) - из производных пиримидинов, аденин (А) и гуанин (Г) - из производных пурина. Кроме азотистых оснований, в составе молекулы человека и животных имеется 5-метилцитозин — минорное пиримидиновое основание. С фосфорной кислотой и дезоксирибозой связываются азотистые основания. Схема строения ДНК продемонстрирована ниже.

Правила Чаргаффа

Строение и биологическая роль ДНК изучались Э. Чаргаффом в 1949 году. В ходе исследований он выявил закономерности, которые наблюдаются в количественном распределении азотистых оснований:

  1. ∑Т + Ц = ∑А + Г (то есть число пиримидиновых оснований равно числу пуриновых).
  2. Всегда количество остатков аденина равно количеству остатков тимина, а количество гуанина равно цитозину.
  3. Коэффициент специфичности имеет формулу: Г+Ц/А+Т. Например, у человека он равен 1,5, у быка - 1,3.
  4. Сумма "А + Ц" равна сумме "Г + Т", то есть аденина и цитозина имеется столько же, сколько гуанина и тимина.

Модель строения ДНК

Ее создали Уотсон и Крик. Остатки фосфатов и дезоксирибоз располагаются по хребту двух закрученных спиралеобразным образом полинуклеотидных цепей. Определено, что плоскостные структуры пиримидиновых и пуриновых оснований располагаются перпендикулярно оси цепи и образуют как бы ступени лестницы в виде спирали. Установлено также, что А всегда соединяется с Т при помощи двух водородных связей, а Г прикреплено к Ц уже тремя такими же связями. Этому явлению дали название "принцип избирательности и комплементарности".

Уровни структурной организации

Изогнутая как спираль полинуклеотидная цепь - это первичная структура, которая имеет определенный качественный и количественный набор мононуклеотидов, связанных 3’,5’-фосфодиэфирной связью. Таким образом, каждая из цепей имеет 3’-конец (дезоксирибоза) и 5’-конец (фосфатный). Участки, которые содержат в себе генетическую информацию, названы структурными генами.

Двухспиральная молекула - это вторичная структура. Причем ее полинуклеотидные цепи антипараллельны и связываются водородными связями между комплементарными основаниями цепей. Установлено, что в каждом витке этой спирали содержится 10 нуклеотидных остатков, длина ее равняется 3,4 нм. Эту структуру поддерживают также Ван-дер-Ваальсовы силы взаимодействия, которые наблюдаются между основаниями одной цепи, включающие отталкивающие и притягивающие компоненты. Эти силы объясняются взаимодействием электронов в соседних атомах. Электростатическое взаимодействие также стабилизирует вторичную структуру. Оно возникает между заряженными положительно молекулами гистонов и заряженной отрицательно нитью ДНК.

Третичная структура - это намотка цепей ДНК на гистоны или суперспирализация. Описано пять видов гистонов: Н1, Н2А, Н2В, Н3, Н4.

Укладка нуклеосом в хроматин - это четвертичная структура, поэтому молекула ДНК, имеющая длину несколько сантиметров, может складываться до 5 нм.

Функции ДНК

Основными функциями ДНК являются:

  1. Хранение наследственной информации. Последовательность аминокислот, находящихся в молекуле белка, определяется порядком, в котором расположены нуклеотидные остатки в молекуле ДНК. Также в ней зашифрована вся информация о свойствах и признаках организма.
  2. ДНК способна передавать наследственную информацию следующему поколению. Это возможно из-за способности к репликации - самоудвоению. ДНК способна распадаться на две комплементарные цепочки, и на каждой из них (в соответствии с принципом комплементарности) восстанавливается исходная последовательность нуклеотидов.
  3. При помощи ДНК происходит биосинтез белков, ферментов и гормонов.

Заключение

Строение ДНК позволяет ей являться хранителем генетической информации, а также передавать ее следующим поколениям. Какие есть особенности у этой молекулы?

  1. Стабильность. Это возможно благодаря гликозидным, водородным и фосфодиэфирным связям, а также механизму репарации индуцированных и спонтанных повреждений.
  2. Возможность репликации. Этот механизм позволяет в соматических клетках сохранять диплоидное число хромосом.
  3. Существование генетического кода. При помощи процессов трансляции и транскрипции последовательность оснований, находящихся в ДНК, преобразуется в последовательность аминокислот, находящихся в полипептидной цепи.
  4. Способность к генетической рекомбинации. При этом образуются новые сочетания генов, которые сцеплены между собой.

Таким образом, строение и функции ДНК позволяют ей играть неоценимую роль в организмах живых существ. Известно, что длина 46-ти молекул ДНК, находящихся в каждой клетке человека, равна почти 2 м, а число нуклеотидных пар составляет 3,2 млрд.

В ядре содержится большая часть ДНК клетки и осуществляется сложный механизм регуляции генной экспрессии
Ядерная оболочка представляет собой двойную мембрану, окружающую ядро
Ядро содержит не окруженные мембраной субкомпартменты
В ядерной оболочке находятся поры, предназначенные для поступления белков в ядро и для выхода из него РНК и белков

При исследовании эукариотической клетки в световом микроскопе, наиболее крупным из видимых компартмен-тов является ядро. Термин «эукариотический» означает «имеющий истинное ядро», и наличие последнего служит характерной особенностью всех эукариотических клеток. В ядре содержится практически весь генетический материал эукариотической клетки, и оно служит центром, контролирующим ее биологическую активность. (Небольшое количество ДНК содержится в митохондриях и в хлоропластах растительных клеток.)

Вероятно, первым, кто увидел клеточное ядро, был Антони ван Левенгук (1632-1723). При изучении клеток крови амфибий и птиц он обнаружил в центре «отчетливую область». Однако честь открытия ядра принадлежит аббату Феликсу Фонтане (1730-1803), который в своих зарисовках клеток эпидермиса кожи угря, сделанных в 1781 г., изобразил ядро в виде яйцевидной структуры.

Шотландский ботаник Роберт Браун (1773-1838) отметил, что во всех изученных им клетках растений содержалась «круглая область, обыкновенно несколько более прозрачная, чем клеточная оболочка». Он был первым, кто назвал эти структуры ядрами, термином, производным от латинского слова нуклеус, обозначающего ядро.

Как видно на микрофотографиях , полученных с помощью электронного микроскопа, ядро окружено двойной мембраной, называемой ядерной оболочкой. Две мембраны разделены промежутком, который контактирует с эндоплазматическим ретикулумом (ЭПР). Пронизывающий ядерную оболочку ядерный поровый комплекс (ЯПК) представляет собой каналы, по которым между ядром и цитоплазмой проходят макромолекулы. В отличие от белков, транспортирующихся через ЭПР или мембраны митохондрий, белки, проходящие через ЯПК, находятся в скрученном состоянии.

Клетка HeLa, представляющая собой клетку карциномы шейки матки,
обладает ядром, хорошо видимым в световом микроскопе.

В ядре находятся субкомпартменты, которые не окружены мембранами . Эти субкомпартменты обладают специализированными функциями. Единственный ядерный субкомпартмент, хорошо видимый в световом микроскопе, - ядрышко, в котором синтезируется рибосомная РНК (рРНК) и собираются субъединицы рибосом. Остальные субкомпартменты видимы с помощью иммунофлуоресцентной микроскопии. К ним относятся тельца, содержащие факторы сплайсинга РНК и области репликации ДНК. Часть ядра, расположенная вне ядрышек, называется нуклеоплазма.

В ядре ДНК находится в различной конфигурации. На микрофотографиях, выполненных с помощью электронного микроскопа, некоторые области ДНК выглядят темнее, потому что скручены более сильно (см. рис. 5.2). Такая ДНК относится к гетерохроматину и не участвует в активной транскрипции. Большая часть гетерохроматина примыкает к ядерной оболочке. Остальная ДНК упакована менее плотно и принадлежит к эухроматину. В этой части хроматина присутствуют активно экспрессирующиеся гены. В большинстве клеток гораздо большая часть ДНК находится в составе эухроматина, чем в гетерохроматине.

Какие преимущества обеспечивает ядро эукариотической клетке? Ядро защищает и участвует в сложном процессе регуляции генной активности. В клетке эукариот содержится больше ДНК, чем в прокариотической клетке (в некоторых случаях в 10 000 раз больше). Эта ДНК упакована в хромосомы, в каждой из которых содержится одна молекула ДНК. Один двунитевый разрыв в ДНК одной хромосомы может оказаться для клетки летальным событием.

В интерфазе ДНК упакована относительно неплотно, так что ферменты, ответственные за репликацию и синтез РНК, имеют к ней доступ. Когда ДНК упакована рыхло, она в большей степени склонна к повреждениям. Подвижная структура цитоскелета генерирует усилия сдвига, которые могут нарушить целостность ДНК в тех местах интерфазного ядра, где она оказывается незащищенной. Напротив, в митозе хромосомы становятся компактными, поскольку ДНК скручивается в плотную структуру. Хотя при митозе ядерная мембрана исчезает и ДНК оказывается в окружении цитоплазмы, конденсированные хромосомы более устойчивы к повреждениям, которые вызываются силами сдвига при движении цитоскелета.

Наличие ядра позволяет клеткам эукариот иметь гораздо более сложную систему регуляции экспрессии генов, чем прокариотическим клеткам. В клетках прокариотических организмов трансляция и транскрипция являются сопряженными процессами: трансляция мРНК начинается до момента завершения их синтеза. Вследствие разделения эукариотической клетки на цитоплазматический и ядерный компартменты многие макромолекулы должны транспортироваться между ядром и цитоплазмой.

Например, транскрипция и процессинг мРНК происходят в ядре, и затем эти молекулы поступают в цитоплазму, где происходит синтез белка. Особенности протекания процессов транскрипции и трансляции в клетках про- и эукариот представлены на рисунке ниже. Для протекания репликации, транскрипции и других ядерных процессов необходимо много белков, которые должны поступать из цитоплазмы. В ядре из множества образующихся там молекул РНК собираются субъединицы рибосом, при этом более сотни необходимых белков импортируются из цитоплазмы. Образующиеся субъединицы выходят в цитоплазму.

Все макромолекулы поступают в ядро и выходят из него через ЯПК Важно отметить, что двухсторонний ядерный транспорт молекул является регулируемым процессом.

Многие детали строения ядра лимфоцита хорошо видны в электронном микроскопе. В клетках прокариот транскрипция и трансляция представляют собой сопряженные процессы (слева).
У эукариот эти же процессы происходят в отдельных компартментах (справа).

ДНК - это химическое вещество, тот материал, из которого состоят хромосомы. Каждая хромосома состоит из одной молекулы ДНК. Таким образом в ядре соматической клетки человека имеется 46 молекул ДНК. Однако ДНК и хромосомы - это не тождественные понятия. Помимо ядра, ДНК содержится в митохондриях, а у растений - ещё и в хлоропластах. Такая ДНК организована не в виде хромосом, а в виде мелких кольцеобразных структур, как у бактерий (сходство с организацией генома бактерий там прослеживается ещё по ряду признаков, вообще, считается, что нынешние митохондрии и пластиды - это бывшие бактерии, которые сначала существовали в эукариотической клетке на правах её симбионта, а со временем стали её частью), при этом в митохондии или пластиде может содержаться от 1 до нескольких десятков таких кольцеобразных ДНК.

В любой молекуле ДНК - линейной хромосоме или кольцевой из митохондрий или пластид - зашифрована информация о последовательности какого-то полипептида (упрощённо можно сказать, что белка, хотя это не совсем так, поскольку синтезированный белок, чтобы обрести свою функцию, после синтеза ещё "дозревает", при этом из молекулы могут ферментативно вырезаться какие-то участки белка, то есть та последовательность, которая зашифрована в ДНК, - это не редактированная последовательность исходного полипептида, из которого белок потом ещё будет формироваться с помощью некоторых химических преобразований). Так вот участок ДНК, с которого синтезируется какой-то конкретный полипептид, - это ген. В каждой хромосоме и в каждой кольцевой молекуле ДНК имеется разное количество генов: в Х-хромосоме человека (одна из самых крупных), к примеру, около 1500 генов, в Y-хромосоме человека их меньше сотни.

Также нужно понимать, что хромосома (либо кольцевая ДНК) - это отнюдь не только гены. Помимо них в любой молекуле ДНК есть и некодирующие участки, причём доля этих некодирующих участков различна у разных видов. Например у бактерий на некодирующую часть генома приходится где-то 20%, а у человека - 97-98%. Причём некодирующие участки есть и посреди генов (интроны) - когда информация с генов переписывается на м-РНК, участки РНК, синтезированные с интронов, вырезаются, и белок синтезируется уже с отредактированных молекул РНК. Но большая часть некодирующей ДНК сосредоточена между генами. Роль этой некодирующей ДНК не до конца изучена (тут, если нужно настолько подробно, можно глянуть в википедию), но считается, что совсем без неё клетка не может. Ну и мутации эта некодирующая часть накапливает гораздо быстрее, чем кодирующая, и поэтому в судебной медицине для идентификации личности используется некодирующая ДНК (поскольку гены - довольно консервативные участки ДНК, мутации в них тоже происходят, но не с такой частотой, чтобы там накапливалось достаточное количество нуклеотидных замен для достоверное идентификации двух индивидуумов).



© 2024 yanaorgo.ru - Сайт о массаже. В здоровом теле, здоровый дух