Способ определения величины бокового зазора. Виды сопряжений зубьев колес в передаче Боковой зазор в передаче

Способ определения величины бокового зазора. Виды сопряжений зубьев колес в передаче Боковой зазор в передаче

29.06.2020

Боковой зазор j n между неработающими профилями зубьев сопряженных колес определяют в сечении, перпендикулярном направлению зубьев, в плоскости, касательной к основным цилиндрам (рисунок 36). Этот зазор необходим для устранения заклинивания при нагреве передачи (температурная компенсация), размещения слоя смазки, а также для компенсации погрешностей изготовления и сборки. Боковой зазор приводит к появлению при реверсировании передач мертвого хода, величину которого ограничивают для уменьшения ударов по нерабочим профилям зубьев. Теоретическая зубчатая передача является двухпрофильной и беззазорной (j n = 0). Реальная передача должна иметь боковой зазор.

Минимальная величина бокового зазора j n min определяет вид сопряжения зубьев. Стандартами предусматривается шесть видов сопряжения: А (с увеличенным гарантированным зазором j n min для 3-12 степеней точности), В (с нормальным гарантированным зазором, 3-11), С, D (с уменьшенным j n min , 3-9, 3-8), Е (с малым j n min , 3-7), Н (нулевым j n min , 3-7).

Установлено восемь видов допусков Тj n бокового зазора (при этом Тj n =

j n min - j n max): h, d, c, b, a, z, y, x. Допуски расположены в порядке возрастания. Видам сопряжения Н и Е соответствует вид допуска h, видам сопряжения D, С, В, А – соответственно d, c, b , a. Допускается по технологическим или иным соображениям менять соответствие видов сопряжения и допуски бокового зазора, используя также виды допуска z, y, x (см. рисунок 36).

Установлено шесть классов отклонений межосевых расстояний, обозначаемых в порядке убывания точности римскими цифрами от 1 до Y1. Гарантированный боковой зазор обеспечивается при соблюдении установленных для данного вида сопряжения классов отклонений межосевого расстояния (Н, Е –II класс, D, C, B, A – III, IY, Y, YI классы).

Минимальный боковой зазор j n min должен учитывать температурную компенсацию j nt и слой смазки  см:

j n min = j nt +  см. (3.156)

Рисунок 36 – Боковой зазор в зубчатой передаче

Необходимую температурную компенсацию можно рассчитать, зная температуру колеса t кол и корпуса передачи t пер и учитывая, что боковой зазор j n измеряют под углом профиля :

t = a w [ кол (t кол – 20 0) -  кор (t кор – 20 0)],

где w – межосевое расстояние,  I – коэффициенты линейного расширения ( кол – колеса,  кор – корпуса).

Учитывая, что толщина смазки должна составлять от 0,01 до 0,03 модуля, получим, что минимальный (гарантированный) боковой зазор j n min должен быть равен

j n min = (0,01  0,03) m + a w [(( кол (t кол –20 0) -  пер (t пер – 20 0) 2sin (3.157)

Сопряжение вида В гарантирует боковой зазор, при котором исключается заклинивание зубьев передачи от нагрева при разности температур колес и корпуса 25 0 С (см. рисунок 36).

Как следует из сказанного, вид сопряжения зубьев назначается расчетным или опытным путем независимо от степеней точности. Допустимые погрешности изготовления или монтажа зубчатой передачи, зависящие от степеней точности, сказываются на максимальной величине бокового зазора.

Существуют три метода обеспечения бокового зазора: регулирование расстояния между осями передачи, применение при изготовлении специального инструмента с утолщенными зубьями и метод радиального смещения исходного контура рейки зубонарезного инструмента.

Первый метод практически не применяют, т.к. перемещение рабочих валов для получения бокового зазора приводит к уменьшению активной части профиля и коэффициента перекрытия; этот метод невозможен при нескольких парах сопряженных зубьев, сидящих на двух параллельных валах, так как отрегулированный боковой зазор одной пары шестерен дает неприемлемые значения для остальных пар шестерен.

Второй метод получения “тонких” зубьев шестерен за счет увеличения толщины режущих зубьев инструмента (фрез, реек и т.д.) ведет к увеличению номенклатуры и удорожанию инструмента.

Третий метод получил преимущественное распространение, так как использует стандартный инструмент и позволяет обеспечивать любые боковые зазоры за счет дополнительного смещения зубонарезного инструмента в “тело” заготовки. Наименьший боковой зазор создается за счет уменьшения толщины зуба по постоянной хорде Е с методом радиального смещения исходного контура на величину Е Н. Дополнительное уменьшение толщины зуба по хорде на величину допуска Т с происходит за счет допуска на смещение исходного контура Т Н, что вызывает соответствующее увеличение бокового зазора. Зависимости, характеризующие изменение бокового зазора от смещения исходного контура и утонения зуба показана на рисунке 36:

j n min = 2 Е Н sin; (3.158)

E C = 2E H tg. (3.159)

Таким образом, боковой зазор определяется смещением исходного контура Е Н, межосевым расстоянием а (для него установлены отклонения f a), толщиной зуба на делительной окружности или постоянной хордой зуба

При наличии радиального биения F r толщины зубьев не остаются постоянными, но изменяются с приближением и удалением к ведущему колесу, поэтому Т Н  F r:

Т Н = 1,1 F r + 20. (3.160)

Боковой зазор состоит из гарантированного бокового зазора j n min и бокового зазора j n 1 для компенсации погрешности изготовления и монтажа (1 и 2 – колесо и шестерни):

j n min + j n1 = (Е Н 1 + Е Н 2)2 sin. (3.161)

Принимая смещение колеса и шестерни приблизительно одинаковыми

Е Н 1  Е Н 2  Е Н, получим ( = 20 0):

Боковой зазор j n 1 учитывает отклонения межосевого расстояния f a , шага зацепления f p в двух колес, отклонения направления F  двух колес, отклонения от параллельности f x и перекоса осей f у, j n 1 равен при квадратичном суммировании:

Наибольший боковой зазор является замыкающим звеном сборочной размерной цепи, составляющими звеньями которой будут отклонения межосевого расстояния и смещения исходных контуров:

j n max = j n min + (Т Н 1 + Т Н 2 + 2f a) 2sin. (3.164)

Учитывая производственные потребности, для характеристики бокового зазора применяют следующие показатели:

    наименьшее смещение исходного контура Е Н (допуск Т Н );

    наименьшее отклонение толщины зуба Е С (допуск Т С = 0,73 Т Н );

    наименьшее отклонение средней длины общей нормали Е wm (допуск Т wm );

    наименьшее отклонение длины общей нормали Е w (допуск Т w );

    предельные отклонения измерительного межосевого расстояния Е а`` (+ E a `` s и -Е а`` I ).

Нормаль W – расстояние между разноименными боковыми поверхностями группы (2, 3 и т.д.) зубьев.

Измерительное межосевое расстояние – расстояние беззазорного сопряжения зубьев контролируемого колеса и измерительного колеса; E a `` s =
(колебание измерительного расстояния на одном зубе); E a `` I = -Т Н.

При разработке чертежей зубчатых колес, корпусов редукторов, приводов и т.д. применяются показатели w (E w , T w), S c (E c , T c), f a (рисунок 36).

При контроле зубчатых колес используют комплексы показателей, которые установлены для различных степеней точности. Комплексы контроля являются равноправными, но не равноценными. Первый из них (для каждой нормы, образованный одним комплексным показателем, дает наиболее полную оценку точности колеса). Каждый последующий характеризует значительную долю основной погрешности или отдельные ее части.

Выбор того или иного комплекса контроля зависит от назначения и точности зубчатых колес и передач (принцип инверсии), их размеров, практики контроля, объема и условий производства и др. Для выбранного комплекса на чертеже зубчатого колеса с нестандартным исходным контуром указывают необходимые допуски и отклонения и колесо контролируют по всем параметрам.

В чертежах зубчатых колес со стандартным исходным контуром (рисунок 37), показатели комплекса конструктор не указывает; эти показатели назначаются технологическими службами.

Контроль зубчатых колес может быть приемочный, профилактический и технологический.

Приемочный контроль – контролируют показатели комплекса.

Профилактический – отладка технологических процессов и выявление причин брака.

Для контроля кинематической точности используют приборы для измерения кинематической погрешности колес, измерительного межосевого расстояния, накопленной погрешности шагов, радиального биения, колебания длины общей нормали, погрешности обката.

При контроле плавности работы применяют приборы для измерения местной кинематической и циклических погрешностей, шага зацепления, погрешности профиля, отклонений углового шага.

При контроле полноты контакта применяют приборы для измерения суммарного пятна контакта, осевого шага, направления зуба, погрешности формы и расположения контактной линии.

При контроле бокового зазора измеряют приборами смещение исходного контура, отклонение измерительного межосевого расстояния, отклонение средней длины общей нормали, толщину зуба (в том числе штангензубомерами).

Рисунок 37 – Зубчатое колесо

Сборка зубчатых передач

В технологическом оборудовании применяются зубчатые передачи 7, 8, 9 и 10-й степени точности, которая задается в зависимости от скорости вращения и типа передачи. В зависимости от рабочей скорости различают тихоходные (окружная скорость до 3 м/с); среднескоростные (окружная скорость 3—5 м/с); быстроходные (окружная скорость свыше 15 м/с) зубчатые передачи. При скорости вращения v = 6—10 м/с применяют прямозубые колеса 7-й или косозубые 8-й степени точности, при v = 2 м/c — прямозубые колеса 9-й степени точности, а в тихоходных передачах — колеса 10-й степени точности.

К зубчатым колесам, поступающим на сборку, и зубчатым передачам предъявляются следующие требования:

— точность изготовления зубчатых колес должна соответствовать требованиям государственных и отраслевых стандартов;

— биение колес (радиальное, торцовое) должно находиться в пределах, установленных техническими условиями для данной передачи;

— зубья колес при контроле на краску должны иметь поверхность контакта, составляющую не менее 0,3 длины и 0,6—0,7 высоты зуба;

— между зубьями колес должен быть зазор, величина которого определяется степенью точности передачи;

— оси валов под зубчатые колеса должны быть взаимно параллельны (для цилиндрической передачи) или взаимно перпендикулярны (для конической зубчатой передачи) и лежать в одной плоскости.

Сборка цилиндрических зубчатых передач. Технологический процесс сборки зубчатой передачи включает в себя следующие основные операции: сборку зубчатого колеса, если в собираемой конструкции предусмотрена установка составных зубчатых колес; установку и закрепление зубчатых колес на валах; монтаж валов с зубчатыми колесами в корпусе; проверку и регулировку зацепления; контроль

Сборка составного зубчатого колеса включает на-прессовку зубчатого венца 1 (рис. 6.33) на ступицу 2 до упора в бурт, обеспечивающего фиксацию венца в осевом направлении относительно диска ступицы, и фиксацию венца от поворота вокруг оси ступицы с помощью стопорных винтов 3 (рис. 6.33, а) или презонных болтов 4 (рис. 6.33, б).

Рис. 6.33. Составное зубчатое колесо с фиксацией зубчатого венца стопором (а) или болтами (6): 1 — зубчатый венец; 2— ступица; 3 — стопорный винт; 4 — болт

Собранная зубчатая передача должна быть испытана на холостом ходу и под нагрузкой и обеспечивать плавность и бесшумность работы, а также умеренный нагрев подшипниковых опор.

Во избежание перекоса и облегчения напрессовки зубчатый венец рекомендуется нагревать в масляной ванне или токами высокой частоты до 150 °С и вначале закреплять его на диске ступицы временными болтами, диаметр которых должен быть меньше диаметра постоянных болтов 4.

После этого проверяют биение зубчатого венца и по результатам проверки при необходимости контролируют его положение относительно ступицы, например, проточкой торцовой поверхности диска ступицы или сопрягаемой с ней поверхности зубчатого венца. При обеспечении требуемой точности его установки последовательно заменяют все временные болты постоянными, затягивая их динамометрическим ключом. После установки постоянных болтов или стопорных винтов окончательно проверяют радиальное биение зубчатого венца.

Установка зубчатых колес . Зубчатые колеса устанавливают на валы с помощью пресса и специальных приспособлений. Эту операцию выполняют также с тепловым воздействием на детали, нагревая колесо или охлаждая вал. Посадочные поверхности шейки вала и отверстия в зубчатом колесе не должны иметь дефектов в виде забоин, трещин и т.п.

Кроме искажения профиля зубчатого венца, типичными дефектами сборки являются: качание зубчатого колеса на шейке вала (рис. 6.34, а), радиальное (рис. 6.34, б) и торцовое (рис. 6.34, в) биения зубчатого колеса; неплотное прилегание его торца к упорному буртику вала (рис. 6.34, г). Радиальное биение зубчатого колеса проверяют индикаторами по диаметру начальной окружности, а торцовое — по торцовой поверхности. Для проверки вал с зубчатым колесом устанавливают на призмах или в центрах.

Рис. 6.34. Погрешности установки зубчатого колеса на валу: а — качание на шейке вала; б — радиальное биение; в — торцовое биение; г — неплотное прилегание к упорному буртику

Радиальное и торцовое биение колеса проверяют с помощью индикаторного приспособления (рис. 6.35). Вал 5 с зубчатым колесом 4 устанавливают в центрах приспособления. Поворачивая от руки вал и перекладывая контрольный валик 3 по впадинам зубьев, с помощью индикатора определяют радиальное биение зубчатого венца, равное разнице в показаниях индикатора в пределах полного оборота колеса. Далее, к торцу обода зубчатого колеса подводят ножку индикатора 1 и, поворачивая колесо, определяют его торцовое биение. Если оно больше допускаемого, то колесо переустанавливают на валу с поворотом относительно его оси на некоторый угол (при установке колеса на шлицах) и повторяют проверку биения. Эта операция может повторяться многократно для выявления положения колеса, при котором его биение минимально.

Рис. 6.35. Схема приспособления для измерения радиального и осевого биения зубчатого колеса: 1 — индикатор; 2 — индикаторная стойка; 3 — валик контрольный; 4 — контролируемое зубчатое колесо; 5 — вал; б — центр

Контрольный валик 3 имеет диаметр, равный 1,68m (где m — модуль), что обеспечивает касание валика по начальной окружности колеса. Обычно радиальное биение для колес 7-й степени точности допускается 0,03—0,08 мм, а торцовое биение — 0,04—0,08 мм на 100 мм диаметра колеса.

На условия работы зубчатых колес существенно влияет расположение ведущего и ведомого валов в корпусе. Для обеспечения геометрически правильного зубчатого зацепления оси валов должны быть взаимно параллельными (рис. 6.36). Расстояние L (мм) между ними

L = m(z 1 + z 2 )/2,

где m — модуль колес, мм; z 1 и z 2 — число зубьев соответственно на ведущем и ведомом колесах.

Рис. 6.36. Схема контрольного приспособления: 1, 3 — оправки; 2 — штихмас; 4— индикатор; 5 — штангенциркуль; D, D 1 —диаметры оправок;Ɩ 1, Ɩ 2 — расстояния между оправками; L — межосевое расстояние

Межосевое расстояние может быть больше (но не меньше) расчетного (номинального) значения на величину ΔL = am (мм) (раздвижка осей), где а — числовой коэффициент, который в зависимости от окружной скорости и межосевого расстояния находится в пределах 0,015—0,04. Меньшие значения коэффициента а соответствуют более высоким окружным скоростям и небольшим межосевым расстояниям (50—200 мм).

Зная разницу в расстояниях L 1 и L 2 между осями отверстий, измеренных в двух плоскостях при расстоянии t (мм) между ними (рис. 6.37), определяют непараллельность осей между собой.

Разность значений межосевого расстояния на длине 1 м не должна превышать допуска на раздвижку осей, т.е.

L 1 - L 2=Δ Lt/1000

Измеряя, например, в тех же плоскостях, с помощью индикатора 4 (см. рис. 6.36) расстояния от основания корпуса до осей отверстий, определяют угол скрещивания осей.

Рис. 6.37. Схема проверки параллельности осей валов: L 1 L 2 — межосевые расстояния между валами; t— расстояние между плоскостями измерений

Если расстояние между осями зубчатых колес меньше или больше допускаемого, то этот дефект устраняется при соответствующей конструкции узла выпрессовкой неправильно запрессованных втулок и последующей запрессовкой и расточкой новых втулок. Для обеспечения требуемого межосевого расстояния иногда необходима расточка отверстия новой втулки эксцентрично ее наружной поверхности.

Проверка бокового и радиального зазоров между зубьями . При монтаже зубчатых передач необходимо обеспечить определенный боковой зазор в зацеплении, правильный контакт зубьев по боковым поверхностям и радиальный зазор во впадинах зубьев.

Боковой зазор необходим для создания нормальных условий смазки зубьев, компенсации погрешностей изготовления, монтажа и температурной деформации элементов передачи. При недостаточном зазоре температурные деформации зубчатых колес в радиальном направлении вызывают выдавливание смазки и быстрое изнашивание зубьев, дополнительное нагружение подшипников и изгиб валов. Это проявляется в виде более интенсивного шума, создаваемого зубчатой передачей (гудение, скрип). При увеличенном боковом зазоре взаимодействие зубьев носит более динамичный (ударный) характер, что может быть причиной их быстрого изнашивания или поломки.

Допускаемая величина зазоров зависит от модуля и степени точности зубчатых колес. Зубчатые колеса необходимо заменять при боковом зазоре Δ б = b"m, где b "— коэффициент, учитывающий допустимый износ зубьев колес; b" = 0,15—0,25 для колес 7-й и 8-й степеней точности; b"= 0,2—0,4 для колес 9-й и 10-й степеней точности; в исключительных случаях для тихоходных колес допускается b" = 0,5.

Боковой зазор между зубьями измеряют непосредственно щупом, через угол поворота одного из зубчатых колес в пределах бокового зазора или с помощью свинцовой проволоки.

В первом случае шестерни прижимают поверхностями зубьев друг к другу, как показано на рис. 6.38, и щупом измеряют образовавшийся зазор Δ б между их свободными боковыми поверхностями. При отсутствии свободного доступа к торцам зубьев для измерения бокового зазора щупом, применяют второй способ. В этом случае одно из зубчатых колес стопорят (рис. 6.39), а на валу другого колеса закрепляют рычаг 1, который контактирует со штоком индикатора 2, закрепленного на корпусе К редуктора.

Рис. 6.38. Схема расположения радиального (Др) и бокового (Дб) зазоров в цилиндрической зубчатой передаче

Рис. 6.39. Схема измерения бокового зазора индикаторным устройством: 1 — рычаг; 2 — индикатор

Поворачивая это колесо в пределах бокового зазора из одного крайнего положения в другое, определяют величину бокового зазора Δ б (мм) через показание С индикатора, приведенное к радиусу начальной окружности зубчатого колеса: Δ б =d 1 C/L, где d 1 —диаметр начальной окружности поворачиваемого зубчатого колеса, мм; L — длина рычага до точки контакта со штоком индикатора, мм. Достоинством этого способа является возможность измерять боковой зазор в передаче без разборки механизма.

Боковой и радиальный зазоры в зубчатой передаче можно определить также по оттиску, который получают, прокатывая свинцовую проволоку между зубьями при вращении зубчатых колес. Измеряя затем микрометром толщину деформированных участков проволоки, определяют соответствующие зазоры между зубьями. Преимуществами этого способа являются простота осуществления и высокая точность измерения зазоров, поэтому он широко применяется на практике.

Допускаемые колебания боковых зазоров указываются в технических условиях на сборку узлов после ремонта. Для передач, собранных из новых зубчатых колес, допускаются следующие зазоры:

— боковой зазор Δ б = bm, где b = 0,02—0,1 — коэффициент, зависящий от окружной скорости и типа передачи;

— радиальный зазор Δ р = (0,15—0,3)m.

Величины радиального и бокового зазоров зависят от точности обработки зубчатых колес и погрешности межцентрового расстояния (раздвижки осей). Например, для эвольвентной зубчатой передачи с углом зацепления 20° влияние раздвижки осей ΔL на величину бокового зазора выражается зависимостью Δ б = 2ΔLsin20° = 0,684am.

Наименьший боковой зазор в зацеплении Δ б = 12

Нагревание зубчатого механизма в процессе работы сопровождается изменением диаметров зубчатых колес и расстояния между осями валов, что влияет на величину зазоров, образованных при сборке зубчатой передачи. Однако это влияние можно не учитывать, так как коэффициенты линейного расширения материалов корпуса и зубчатых колес имеют близкие значения.

Если зазор в зубчатом зацеплении не соответствует требованиям технических условий или зубчатые колеса вращаются с периодическим заклиниванием, то передачу необходимо разобрать, подогнать зубчатые колеса или заменить их новыми и снова произвести сборку.

При контроле величины зазора возможны следующие случаи.

1.Недостаточная величина зазора между зубьями. Причиной этого могут быть зубья, изготовленные полнее на одном или обоих зубчатых колесах. В этом случае необходимо колеса заменить.

2.Зазор в зубьях больше допускаемого. Это возможно, если толщина зубьев на одном или обоих зубчатых колесах меньше допускаемой или увеличено расстояние между осями зубчатых колес. Погрешности устраняются так же, как указано раньше.

3.Зазор в зубьях неравномерный. В этом случае определяется визуально наихудшее положение, например, наименьший зазор, после чего зубчатые колеса расцепляются, одно из них поворачивается на 180° и колеса снова сцепляются. Если после этого зацепление не изменилось, то причину следует искать во втором зубчатом колесе. Если же зазор стал больше, то причина — в первом зубчатом колесе, и его необходимо заменить.

4.Неравномерная толщина зубьев одного зубчатого колеса или эксцентричность осей начальной окружности зубьев или втулки зубчатого колеса.

5.Зубчатое колесо при зацеплении имеет биение по торцу зуба. Этот дефект возникает при перекосе оси отверстия колеса и легко выявляется индикатором. Если же зуб колеса зацепляется неправильно (утоплен в направлении торца) и при проворачивании колеса на 180° положение не меняется, то имеет место перекос в корпусе оси гнезда втулки, несущей вал зубчатого колеса. Эта погрешность исправляется путем запрессовки новой втулки и последующей ее расточки.

Проверка качания колес относительно вала . Зубчатые цилиндрические колеса, неподвижно установленные на валу, не должны иметь качаний (рис. 6.40), превышающих допускаемые значения относительно оси вала (угловое качание) и в проходящей через нее плоскости (боковое качание).

Рис. 6.40. Схема проверки качания колеса: а — в плоскости, проходящей через ось вала; б — вокруг оси вала

Допускаемая величина качания обусловлена допускаемыми значениями зазора между ступицей зубчатого колеса и валом и зазора в шпоночном или шлицевом соединении. Для колес 7-й и 8-й степеней точности допускается угловое качание не более 0,02 мм и боковое качание не более 0,05 мм на радиусе 50 мм. Оба вида качания зубчатого колеса проверяют индикаторами (см. рис. 6.40).

Для оценки качества собранного узла, кроме выполнения рассмотренных проверок, определяют мощность, необходимую для вращения вхолостую (мощность холостого хода). Для этого узел присоединяют к тарированному электродвигателю и определяют при помощи ваттметра потребляемую мощность.

Сборка конических зубчатых передач . Последовательность операций сборки узлов с коническими зубчатыми колесами и проверка собранных узлов такие же, как и при сборке цилиндрических. Конические зубчатые колеса имеют зуб переменной толщины, что усложняет их сборку. Она включает следующие работы:

— установку и закрепление зубчатых колес на валах;

— установку валов с зубчатыми колесами в корпусе;

— регулировку зубчатого зацепления с целью обеспечения требуемого зазора в передаче и плавности ее работы.

При сборке передачи необходимо установить оба сцепляемых колеса в такое положение, при котором их начальные окружности соприкасаются в одной точке (рис. 6.41), а вершины конусов и образующие конусов совмещаются, что достигается регулировкой передачи. В этом случае начальные окружности колес соприкасаются, а зазор при проворачивании колес будет равен нормальному и одинаков по всей окружности.

Рис. 6.41. Элементы зацепления конической зубчатой передачи: δ — межосевой угол передачи; φ 1. φ 2 — углы начальных конусов; Ɩ — длина образующей начального конуса

Качество сборки конической зубчатой передачи зависит от точности относительного расположения осей валов, точности изготовления и расположения зубчатых колес относительно друг друга, величин бокового и радиального зазоров, влияющих на условия контакта зубьев. Для получения правильного зацепления конических колес их оси должны быть расположены в одной плоскости. Выполнение этого условия зависит от точности расположения отверстий в корпусе механизма. При этом погрешности параметров поступающих на сборку колес не должны превышать допускаемых значений.

Собираемость конической передачи существенно зависит от фактических значений углов φ 1. φ 2 начальных конусов, определяющих межосевой угол δ передачи. Если оси колес не лежат в одной плоскости, то имеет место смещение δ осей (рис. 6.42, а). Допускаемое его значение зависит от степени точности и модуля т зубчатых колес. Например, для колес 8-й степени точности при m = 2—8 мм δ = (0,015—0,06)m, а для m = 8—14 мм δ = (0,02—0,015)m, то есть чем больше модуль, тем меньше значение числового коэффициента.

Смещение осей вызывается их расположением в различных плоскостях. Расстояние δ между плоскостями, в которых расположены оси зубчатых колес, можно определить при помощи контрольных оправок, концы которых срезаны вдоль оси (рис. 6.42, б). Его определяют, измеряя щупом или специальным калибром расстояние между плоскими поверхностями оправок, и полученную величину сравнивают с допускаемым смещением осей.

Перпендикулярность осей обычно проверяют при помощи контрольных оправок. В одно отверстие корпуса вставляют гладкую контрольную оправку 3 (рис. 6.42, в), а в другое — оправку 1 с наконечниками 2 и 4, рабочие поверхности которых расположены в плоскости, перпендикулярной к оси оправки. По разности зазоров между оправкой 3 и рабочими поверхностями наконечников 2 и 4, которые измеряют с помощью щупа, определяют неперпендикулярность осей.

Рис. 6.42. Схемы относительного расположения и контроля элементов конической зубчатой передачи: а — непересечение осей колес; б — схема контроля смещения осей валов; в — схема контроля неперпендикулярности осей валов: 1, 3— контрольные оправки; 2,4 — наконечники

Возможные варианты относительного расположения конических зубчатых колес при несовмещении вершин их начальных конусов показаны на рис. 6.43. Совмещение вершин конусов обеспечивается перемещением вдоль своих осей при сборке одного (см. рис. 6.43, а) или обоих (рис. 6.43, б, е) зубчатых колес. Несовпадение вершин конусов ΔА (рис. 6.44) как замыкающее звено размерной цепи определяется из равенства ΔА = А 1 – А 2 - А 3 и обеспечивается за счет изменения размера А 2 (толщины компенсатора 1).

Рис. 6.43. Схемы расположения зубчатых колес при несовмещении вершин их начальных конусов в одной (а) и двух (б, в) плоскостях

Регулировка конического зацепления по рассмотренной схеме при сборке неудобна, так как связана с необходимостью разборки механизма для установки компенсатора.

Регулировку проще выполнять перемещением зубчатого колеса вместе с валом (рис. 6.45) или по неподвижному валу посредством регулировочных гаек (рис. 6.46), что не требует разборки механизма.

Рис. 6.44. Схема сборки зацепления конических колес с компенсатором 1

Рис. 6.45. Конструкции узлов с регулируемым положением конической шестерни: а — узел с одним компенсатором; б — конструкция компенсатора; в — узел с двумя компенсаторами: 1 — компенсатор; 2 — крышка; 3 — корпус; 4 — стакан; 5 — вал; 6 — шестерня

Если опоры вала с коническим колесом расположены в одной стенке корпуса 3 в стакане 4 (рис. 6.45, а), то их перемещение вдоль оси вала 5 обеспечивается за счет изменения толщины а компенсатора 1

Последний обычно выполняется в виде двух полуколец (рис. 6.45, б) или комплекта тонких полуколец толщиной от 0,1 до 0,8 мм. В первом случае для возможности перемещения конического колеса на заданное расстояние сошлифовывают торец компенсатора до нужной толщины, а во втором — изменяют толщину комплекта за счет количества и толщины отдельных полуколец.

Благодаря тому, что регулировочные элементы представляют собой не целые кольца, а полукольца, при вывернутых винтах они свободно вынимаются из-под фланца стакана для изменения их толщины а и устанавливаются при сборке на место без демонтажа стакана. После этого крышка 2, стакан 4 и компенсатор 1 крепятся винтами к корпусу 3 механизма.

Если опоры вала расположены в разных стенках корпуса 3, то осевое положение вала 5 с шестерней 6 регулируют изменением толщины δ 1 и δ 2 (рис. 6.45, в) двух компенсаторов 7, каждый из которых представляет набор тонких металлических прокладок. Этими же прокладками производится регулировка подшипников. Поэтому вначале, исходя из условия обеспечения требуемого натяга подшипников, необходимо определить общую толщину δ 1 + δ 2 прокладок, а затем их переустановкой с одного места на другое отрегулировать осевое положение вала с шестерней, контролируя зубчатое зацепление.

Положение шестерни 1 вдоль оси вала 2 можно регулировать с помощью двух (рис. 6.46, а) или одной (рис. 6.46, б) гаек 3. В первом случае она фиксируется относительно вала теми же гайками, а во втором — стопорным винтом 4.

Рис. 6.46. Схемы регулирования положения конической шестерни двумя (а) или одной (б) гайками: 1 — шестерня; 2 — вал; 3 — гайка; 4 — стопорный винт

Проверка степени прилегания зубьев колес . Зацепление цилиндрических и конических колес контролируют при сборке по форме пятна контакта, обеспечивая тем самым правильность касания зубьев. Для этого зубья меньшего колеса покрывают краской и колеса приводят во вращение поочередно в одну и другую сторону, чтобы пятна краски равномерно покрыли среднюю часть боковой поверхности зубьев. После этого по отпечаткам на сопряженном зубчатом колесе судят о качестве сборки, сравнивая полученные отпечатки с установленными нормами. Покрытая пятнами площадь зависит от степени точности колеса: для передач 7-й степени точности — не менее 0,75 длины и 0,6 высоты зуба; 8-й степени — соответственно 0,6 и 0,4; 9-й степени — 0,5 и 0,3 и в передачах 10-й степени точности — 0,4 и 0,2.

Зубья 7-й и 8-й степеней точности доводят до требуемой степени прилегания боковых поверхностей приработкой и обкаткой, 9-й и 10-й степеней точности — шабрением.

Несоблюдение межцентрового расстояния, а также непараллельность и перекос осей в зубчатой передаче обуславливают неправильный контакт зубьев, что выявляют по форме и расположению пятен контакта на их рабочих поверхностях. При неправильном расположении пятен контакта зубьев цилиндрических колес следует проверить их точность, а также межцентровые расстояния и параллельность осей в корпусе.

На рис. 6.47 показана форма пятен контакта зубьев цилиндрических колес при правильном зацеплении (рис. 6.47, а) и погрешностях взаимного расположения осей (рис. 6.47, б—г).

Рис. 6.47. Расположение пятен контакта зубьев цилиндрических колес: а — при качественной сборке передачи; б — при перекосе осей колес; в — при увеличенном межосевом расстоянии; г — при уменьшенном межосевом расстоянии

По расположению пятен контакта можно установить следующие дефекты сборки цилиндрической зубчатой передачи:

1. Пятно контакта расположено с одной стороны зуба (рис. 6.47, 6). Это свидетельствует о перекосе осей колес или валов. Если положение пятна контакта не изменяется при повороте зубчатого колеса на 180°, то перекошена ось отверстий в корпусе. Для устранения этого дефекта необходимо расточить заново отверстия в корпусе, запрессовать в них втулки и расточить их под подшипники.

2. Пятно контакта расположено в верхней части зуба (рис. 6.47, в), что имеет место при увеличенном расстоянии между осями валов в корпусе. Дефект устраняется, как и в предыдущем случае.

3. Пятно контакта расположено у ножки зуба (рис. 6.47, г). Это свидетельствует о недостаточном радиальном зазоре из-за увеличенной толщины зубьев или уменьшенного межцентрового расстояния. В этом случае необходимо подобрать зубчатые колеса с меньшей толщиной зубьев или изменить, как описано выше, межцентровое расстояние.

Поверхность контакта зубьев в конической передаче меньше, чем в цилиндрической. При проверке зацепления конических передач «на краску» возможно расположение пятен контакта, как показано на рис. 6.48: а — при правильном зацеплении; б — при недостаточном зазоре между зубьями; в, г — соответственно межосевой угол больше или меньше расчетного.

Боковой зазор проверяют так же, как и в цилиндрических зубчатых передачах (щупом, свинцовой проволокой). Необходимый боковой зазор обеспечивают перемещением одного или обоих колес вдоль их осей.

Допустимые зазоры для конических колес указываются в конструкторской документации и зависят от их модуля и степени точности.

Быстроходные зубчатые передачи проверяют также на шум. Чем точнее они изготовлены и собраны, тем ниже уровень шума. Контроль осуществляется с помощью специальных приборов — шумомеров. Допускаемый уровень шума указывается в технической документации на изделие.

Рис. 6.48. Расположение пятен контакта при контроле «на краску» конической зубчатой передачи: а — при правильном зацеплении; б—г — при неправильном зацеплении

Сборка и регулировка червячных передач

При сборке червячных передач требуется обеспечить правильный контакт зубьев, необходимый боковой зазор в зацеплении и постоянство момента вращения червяка. Для этого, кроме изготовления с заданной точностью червяка и червячного колеса, необходимо обеспечить с допускаемыми погрешностями расстояние между их осями, перпендикулярность этих осей между собой и расположение оси червяка в средней плоскости венца червячного колеса.

Если выполнение первых двух требований зависит в основном от точности изготовления корпуса червячной передачи, то последнее может быть обеспечено только за счет качества сборки. При некачественной сборке снижается КПД, увеличиваются тепловыделение и интенсивность изнашивания червячной передачи.

Совмещением оси червяка 2 со средней плоскостью венца червячного колеса 1 достигается оптимальная форма пятна контакта их зубьев (рис. 6,49, а). На рис. 6.49, б,в изображены пятна контакта при неправильном зацеплении, т.е. при смещении колеса относительно оси червяка соответственно вправо на величину е 1 или влево на е 2 .

Для обеспечения надежной работы червячной передачи, между витками червяка и зубьями колеса должен быть гарантированный боковой зазор. Однако он является причиной «мертвого хода» червяка, под которым понимается угол поворота червяка, при котором червячное колесо остается неподвижным. Для новых передач величина бокового зазора составляет (0,015—0,03)m, где m — торцовый модуль передачи, мм.

Боковой зазор с (мм) определяют по углу поворота червяка при закрепленном червячном колесе; с = φmk/412, где φ — угол поворота червяка; m — осевой модуль, мм; k — число заходов червяка.

Рис. 6.49. Форма пятна контакта в червячной передаче при правильной (а) и неправильной (б, в) сборке: 1 — червячное колесо; 2 — червяк

Определяют «мертвый ход» червяка следующим образом. На вал червяка надевают градуированный диск 3 (рис. 6.50), а к одному из зубьев червячного колеса подводят индикатор 1.

Угол «мертвого хода» устанавливают по указателю 2 при покачивании червяка, причем стрелка индикатора должна оставаться неподвижной. В передачах 7-й и 8-й степеней точности «мертвый ход» червяка должен быть в пределах 8—12° при однозаходном, 4—6° при двухзаходном и 3—4° при трехзаходном червяках.

Проверка степени прилегания рабочих поверхностей червяка и червячного колеса производится «на краску». Винтовую поверхность червяка покрывают тонким слоем краски и медленно проворачивают червяк. По расположению отпечатков на колесе судят о правильности сборки передачи (см. рис. 6.49).

При наличии смещения червячного колеса 2, регулируют его положение относительно червяка 3 и одновременно натяг в подшипниках за счет изменения толщин δ 1 и δ 2 (рис. 6.51) компенсаторов 1 (набор прокладок) аналогично, как описано выше для узла с коническими зубчатыми колесами. Выверку положения червячного колеса производят также его перемещением вдоль оси вала с помощью гаек, аналогично тому, как показано на рис. 6.46, а для конического колеса. При правильном положении червяка краска должна покрывать поверхность зуба червячного колеса не менее чем на 50—60 % по длине и высоте.

Рис. 6.50. Схема проверки мертвого хода червяка: 1 — индикатор; 2 — указатель; 3 — градуированный диск

Рис. 6.51. Конструкция передачи с регулируемым положением червячного колеса:

1 — компенсаторы; 2 — червячное колесо; 3 — червяк

В случае неудовлетворительного прилегания рекомендуется пришабрить зубья, а затем их приработать. После сборки червячную передачу проверяют на легкость проворачивания вхолостую. Крутящий момент, необходимый для вращения червяка, не должен изменяться в пределах одного полного оборота червячного колеса более чем на 30—40 %.

Типы боковых зазоров (определяются для каждого зубчатого колеса в наборе зубчатых колес)

Реальные зубчатые колеса должны производиться со специальными допустимыми боковыми зазорами. Определите допустимые значения, исходя из своих рабочих условий.

В цилиндрических и косозубых зубчатых зацеплениях существует два способа определения необходимого значения бокового зазора. Во-первых, уменьшите толщину зуба, погрузив пуансон в пустую форму на глубину, превышающую теоретически допустимую по стандарту. Во-вторых, увеличьте межосевое расстояние по сравнению с рассчитанным теоретически.

При задании бокового зазора, учитывайте следующие факторы:

  • Пространство, необходимое для смазки.
  • Дифференциальное расширение между компонентами зубчатого колеса и кожухом.
  • Ошибки в расчетах. Недостаточность обоих колес, ошибки профиля, шаг, толщина зуба, угол наклона зуба и межосевое расстояние. Чем меньше величина бокового зазора, тем более точной будет машинная обработка зубчатого колеса.
  • Условия работы, например, частое реверсирование или избыточная нагрузка.

Размер бокового зазора не должен быть слишком велик для соответствия требованиям работы. Убедитесь, что он достаточен для того, чтобы затраты на машинную обработку не превысили необходимые.

Традиционно устанавливается половина значения допуска для бокового зазора на толщину зубьев каждого зубчатого колеса из пары. Однако существуют исключения. Например, в шестернях, имеющих малое количество зубьев, используются все допустимые значения для ведомого зубчатого колеса. В результате не происходит ослабления зуба шестерни.

  • Круговой боковой зазор j t [мм/дюймы]
  • Нормальный боковой зазор j n [мм/дюймы]
  • Центральный боковой зазор j r [мм/дюймы]
  • Угловой боковой зазор j Θ [град]
Типы зацепления зубчатых колес Отношение между круговым направлением j t и нормальным направлением j n Отношение между круговым направлением j t и центральным направлением j r Отношение между круговым направлением j t и угловым боковым зазором j Θ
Цилиндрическое зубчатое зацепление j n = j t cos α
Косозубое цилиндрическое зубчатое колесо j nn = j tt cos α n cos β

Боковой зазор зацепления косозубого колеса

Для косозубых колес имеется два вида боковых зазоров, относящихся к интервалу зуба. Существует поперечное сечение в нормальном направлении поверхности зубьев “n” и поперечное сечение в перпендикулярном направлении к оси “t”.

j nn

Боковой зазор в направлении, перпендикулярном по отношению к поверхности зуба

j nt

Боковой зазор в круговом направлении в поперечном сечении, перпендикулярном по отношению к зубу

j tn

Боковой зазор в направлении, перпендикулярном по отношению к поверхности зуба в поперечном сечении, перпендикулярном оси

j tt

Боковой зазор в круговом направлении, перпендикулярном оси

В плоскости нормали к зубу:

j nn = j nt cos α n

М.В. Абрамчук

Научный руководитель - доктор технических наук, профессор Б.П. Тимофеев

В статье сравниваются стандарты ISO/TR 10064-2:1996 и ГОСТ 1643-81 в плане организации нормирования и контроля бокового зазора в зубчатых передачах. Также производится сравнение величин минимального бокового зазора в обоих указанных стандартах.

Введение

Рассмотрим технический отчет «ISO/TR 10064-2 Передачи зубчатые цилиндрические. Практическое руководство по приемке. Часть 2: Контроль суммарных радиальных отклонений, биения, толщины зуба и зазора». При этом начнем с Приложения А, имеющего заголовок «Боковой зазор и допуск на толщину зуба». Будем последовательно сравнивать положения упомянутого Приложения А с разделом 3 базового стандарта ГОСТ 1643-81 «Нормы бокового зазора».

Контроль бокового зазора

Стандарт ISO/TR 10064-2 содержит рекомендации по нормированию бокового зазора сопряжения и толщины зубьев колес. При этом все, говорящееся в стандарте, носит рекомендательный характер, в то время как нормы, приведенные в отечественном стандарте ГОСТ 1643-81, являлись обязательными для исполнения.

В первом пункте Приложения А стандарта ISO/TR 10064-2 приводится метод выбора допусков на толщину зуба колес и минимального бокового зазора. Кроме того, приводятся метод расчета максимального предполагаемого бокового зазора в зубчатом зацеплении и рекомендуемые величины минимального бокового зазора . В ГОСТ 1643-81 устанавливаются нормы бокового зазора и приводятся таблицы с величинами соответствующих норм. Методов расчета, аналогичных приведенным в рекомендациях стандарта ISO/TR 10064-2, в ГОСТ 1643-81 нет.

Во втором пункте стандарта ISO/TR 10064-2 дается определение бокового зазора и приводится обоснование необходимой его величины. Также говорится, что «боковой зазор в зацеплении изменяется в процессе функционирования передачи вследствие изменения скорости вращения колес, температуры, нагрузки и т.д.» . Наш стандарт не содержит определения бокового зазора и условий функционирования передачи, обусловливающих его изменение.

Третий пункт Приложения А стандарта ISO/TR 10064-2 называется «Максимальная толщина зуба колеса». В нем дается определение этого понятия. В ГОСТ 1643-81 никаких пояснений по максимальной толщине зуба колеса не содержится, приводятся только таблицы со значениями допусков Ecs (наименьшего отклонения толщины зуба) и Tc (допуска на толщину зуба).

В четвертом пункте Приложения А стандарта ISO/TR 10064-2, имеющем заголовок «Минимальный боковой зазор» дается определение минимального бокового зазора и описывается необходимость наличия минимального бокового зазора - «это так называемый традиционный «допуск на боковой зазор», который создается конструктором, чтобы компенсировать:

(а) погрешности корпуса и подшипников, прогибы валов;

(б) несоосность осей колес вследствие погрешностей корпуса и зазоров в подшипниках;

(в) перекос осей вследствие погрешностей корпуса и зазоров в подшипниках;

(г) погрешности монтажа, такие как эксцентриситет валов;

(д) биения опор;

(е) температурные воздействия (функция разности температуры между корпусом и элементами колеса, межосевого расстояния и разницы материалов);

(ж) увеличение центробежной силы вращающихся элементов;

(з) другие факторы, такие как загрязнение смазки и увеличение в размерах неметаллических частей колеса» .

Также говорится, что «величина минимального бокового зазора может быть небольшой при условии того, что приведенные выше факторы контролируются. Каждый из факторов можно оценить посредством анализа допусков, а затем, вычислить минимальные требования» .

Рекомендации стандарта ISO/TR 10064-2:1996 обязывают нас при расчете допусков на боковой зазор учитывать погрешности незубчатых элементов передачи, а также условия ее работы, что в действующем базовом стандарте ГОСТ 1643-81 абсолютно не учитывается. Об этом недостатке нашего стандарта говорили многие отечественные специалисты, особенно настойчиво Б.П. Тимофеев (см., например, ). Необходима стандартизация расчета бокового зазора на основании проведения широких экспериментальных работ ввиду недостаточности и противоречивости имеющихся рекомендаций .

В целом же базовый стандарт ГОСТ 1643-81 нормирует боковой зазор следующим образом. Вид сопряжений зубьев колес в передаче характеризуется наименьшим гарантированным боковым зазором jn . Требования к боковому зазору устанавливают независимо от точности изготовления зубчатых колес. Стандартом установлены гарантированный (наименьший) боковой зазор в зубчатой передаче jn min - наименьший предписанный боковой зазор, и допуск на боковой зазор Tjn, равный разности между наибольшим допустимым и гарантированным (наименьшим) боковыми зазорами. Нормы бокового зазора не связаны однозначно с конструкцией и условиями эксплуатации передач, что в некоторых случаях приводит к заклиниванию передачи, несмотря на «гарантированный» стандартом минимальный боковой зазор .

В зависимости от величины гарантированного бокового зазора стандартом ГОСТ 1643-81 установлено шесть видов сопряжений зубьев колес в передаче: H, E, D, C, B, A и восемь видов допуска на боковой зазор, обозначаемых в порядке его возрастания буквами h, d, c, b, a, x, y, z. Сопряжение H - с нулевым наименьшим зазором, Е - с малым, C и D - с уменьшенным, А - с увеличенным. Сопряжение вида B обеспечивает минимальную величину бокового зазора, при котором исключается возможность заклинивания стальной или чугунной передачи от нагрева при разности температур зубчатых колес и корпуса в 25 °C .

При отсутствии специальных требований к зубчатым передачам необходимо исходить из следующих положений: видам сопряжений Н и Е соответствует вид допуска на боковой зазор h, видам сопряжений D, C, B и A - виды допусков d, c, b и a, соответственно.

Соответствие между видом сопряжения зубчатых колес в передаче и видом допуска на боковой зазор допускается изменять; при этом также могут быть использованы виды допусков x, y, z .

Также устанавливаются шесть классов отклонений межосевого расстояния, обозначаемых в порядке убывания точности римскими цифрами от I до VI.

Точность изготовления зубчатых колес и передач задается степенью точности, а требования к боковому зазору определяются видом сопряжения по нормам бокового зазора. Гарантированный боковой зазор в каждом сопряжении обеспечивается при соблюдении предусмотренных классов отклонений межосевого расстояния (для сопряжений H и E - II класса, а для сопряжений D, C, B и A - классов III, IV, V и VI, соответст-

венно). При этом получается переопределение величины гарантированного бокового зазора: с одной стороны, он зависит от вида сопряжений, с другой - от класса отклонения межосевого расстояния.

Указывается также, что допускается изменять соответствие между видом сопряжения и классом отклонений межосевого расстояния.

Полный боковой зазор состоит из гарантированного бокового зазора, jnmin и части бокового зазора, к, так называемой компенсации уменьшения бокового зазора, возникающей из-за погрешности изготовления зубчатых колес и монтажа передачи . Величина компенсации определяется по формуле:

k} =4(f« 2sin а)2 + 2fP\ + 2Fß + (sin а)2 +(fy sin а)2 ,

где fa - предельное отклонение межосевого расстояния, fPb - предельное отклонение шага зацепления, Fß - погрешность направления профиля, fx - допуск на параллельность осей, fy - допуск на перекос осей, а - угол зацепления передачи.

При определении к, не учитывается радиальное биение зубчатого венца, Frr, а при некратных числах зубьев любая выставка эксцентриситетов колес не исключает положения, когда боковой зазор jn в передаче будет определяться именно этим фактором .

В уже упомянутом четвертом пункте Приложения А стандарта ISO/TR 10064-2 приведена таблица с величинами минимального бокового зазора, рекомендуемыми для промышленных приводов с колесами из черных металлов в корпусах из черных металлов, работающих при окружных скоростях меньше, чем 15 м/с, с типичными коммерческими (термин оригинала, у нас более принятым является термин «экономически обоснованными») производственными допусками для корпусов, валов и опор .

Произведем сравнение величин минимального бокового зазора в ISO/TR 10064-2 и ГОСТ 1643-81, учитывая то обстоятельство, что в ISO/TR 10064-2 величина зазора зависит от модуля зубьев mn и минимального межосевого расстояния аг-, в то время как в нашем стандарте - от вида сопряжения и межосевого расстояния aw. Возьмем вид сопряжения В для модулей зубьев в диапазоне mn=(1,5-5) мм и вид сопряжения А, для модулей mn=(12-18) мм. Полученные результаты сведем в таблицу. Жирным выделены значения гарантированного бокового зазора, взятые из ГОСТ 1643-81.

mn, мм Минимальное межосевое расстояние, аь мм

50 100 200 400 800 1600

1,5 90 120 110 140 - - - -

3 120 120 140 140 170 185 240 230 - -

5 - 180 140 210 185 280 230 - -

12 - - 350 290 420 360 550 500 -

18 - - - 540 360 670 500 940 780

Таблица. Сравнение величин минимального бокового зазора в ISO/TR 10064-2 и ГОСТ

Как видно из таблицы, при модуле зубьев mn=3 мм величины минимального бокового зазора в ISO/TR 10064-2 и гарантированного бокового зазора в ГОСТ 1643-81

практически совпадают. При mn<3 минимальный боковой зазор по ISO/TR 10064-2 меньше, чем в ГОСТ 1643-81, mn>3 - больше.

Величины, приведенные в таблице стандарта в ISO/TR 10064-2 можно рассчитать, пользуясь выражением:

ГОСТ 1643-81 не содержит зависимостей для расчета значений гарантированного бокового зазора, jnmin.

Также в четвертом пункте стандарта ISO/TR 10064-2 приводится формула для расчета бокового зазора:

где ЕцШ1 и ЕцПц2 - верхнее отклонение толщины зуба шестерни и колеса, соответственно, а ап -угол профиля нормальный.

бина утонения и доля радиального зазора шестерни и колеса равны, а значение коэффициента перекрытия максимально» . В отличие от стандарта ISO/TR 10064-2, в ГОСТ 1643-81 наименьшие отклонения толщины зуба колеса и шестерни равны быть не могут, потому что зависят от делительного диаметра, величины которого у шестерни и зубчатого колеса разные.

Пятый пункт стандарта ISO/TR 10064-2:1996 посвящен нормированию толщины зуба. В нем, в частности, даются рекомендации по определению максимальной и минимальной толщины зуба. В нашем стандарте ГОСТ 1643-81 тема нормирования толщины зуба, помимо приведения табличных значений наименьшего отклонения толщины зуба и допуска на толщину зуба, не затрагивается.

Шестой пункт ISO/TR 10064-2 содержит рекомендации по нормированию максимального бокового зазора. Приводится определение этого параметра точности - «максимальный боковой зазор в зубчатой передаче, jbnmax - это сумма допуска на толщину зуба, влияния отклонений межосевого расстояния и влияния отклонений геометрии зуба колеса» и условие его возникновения: «теоретический максимальный боковой зазор возникает, когда два качественных зубчатых колеса, сделанных в соответствии с нормой минимальной толщины зуба, находятся в зацеплении на максимально допустимом свободном межосевом расстоянии» . Приводятся формулы для подсчета минимальной действительной толщины зуба и максимального окружного бокового зазора, а также формула перевода величины окружного зазора в нормальный боковой зазор. Также говорится, что «любые производственные отклонения зуба будут увеличивать максимальный предполагаемый боковой зазор. Для оценки приемлемых величин требуется серьезная исследовательская работа на базе большого количества опытов» . Подчеркивается, что «если требуется контролировать максимальный боковой зазор, то нужно провести тщательное изучение каждого его компонента и выбранной степени точности, ограничивающей отклонения геометрии зуба колеса» . Нормирование максимального бокового зазора в ГОСТ 1643-81 сводится к приведению величин гарантированного бокового зазора, jnmin, а величину допуска на боковой зазор Г,„ рекомендуется получать из выражения:

Положения стандарта ISO/TR 10064-2 носят рекомендательный характер, конкретных данных по нормированию он не содержит. В качестве показателей зазора ис-

где ТН1 и ТН2 - допуски на смещение исходного контура шестерни и колеса.

пользуются величины Esns и Tsn (верхнее отклонение толщины зуба и допуск на толщину зуба колеса). У нас это Ecs (наименьшее отклонение толщины зуба) и Tc (допуск на толщину зуба). Величины Esns и Tsn в ISO/TR 10064-2 не нормируются, а даются только рекомендации в части методов их определения. Таким образом, принятие этих рекомендаций без разработки стандартных норм, обеспечивающих боковой зазор, означало бы отказ от использования методов и средств измерения всех показателей, приведенных в нашем стандарте, а именно:

EHs (наименьшее дополнительное смещение исходного контура);

Ewms (наименьшее отклонение средней длины общей нормали);

Ews (наименьшее отклонение длины общей нормали);

Ea""s (верхнее предельное отклонение измерительного межосевого расстояния) и других.

Рекомендации стандарта ISO/TR 10064-2 не связывают величину зазора и ее нормирование ни с видом сопряжения, ни с видом допуска на боковой зазор, ни с классом отклонения межосевого расстояния. Однако они требуют обязательного учета погрешности изготовления и монтажа незубчатых деталей передачи (корпуса, валов, подшипников и т.д.), условий работы зубчатой передачи, а также вида смазки, ее загрязнения, наличия неметаллических частей колес и других элементов.

Заключение

Подробное рассмотрение стандарта ISO/TR 10064-2:1996 и его сравнение с ГОСТ 1643-81 приводит нас к выводу о необходимости безотлагательной разработки отечественного стандарта, содержащего конкретные допуски на нормируемые величины, позволяющие в полном объеме использовать существующее оборудование для контроля зубчатых колес и передач. Упомянутый нормативный документ должен, в противоположность стандарту ГОСТ 1643-81, соответствовать основным принципам рекомендаций стандарта ISO. Организовать производство зубчатых колес и передач только на базе рекомендаций ISO без использования отечественного стандарта невозможно. Существующий же стандарт ГОСТ 1643-81 в целом ряде положений прямо противоречит упомянутым рекомендациям.

Литература

1. ISO/TR 10064-2:1996. Cylindrical gears. Code of inspection practice. Part 2. Inspection related to radial composite deviations, runout, tooth thickness and backlash.

2. Тимофеев Б.П., Шалобаев Е.В. Состояние и перспективы нормирования точности зубчатых колес и передач. // Вестник машиностроения. № 12. 1990. С. 34-36.

3. Тищенко О.Ф., Валединский А.С. Взаимозаменяемость, стандартизация и технические измерения. М.: Машиностроение, 1977.

4. Тимофеев Б.П., Шалобаев Е.В. Установление вида сопряжения в зубчатой передаче и регламентация норм бокового зазора. // Метрологическая служба в СССР. М.: Изд-во стандартов. 1990. Вып. 2. С. 27-31.

5. ГОСТ 1643-81. Передачи зубчатые цилиндрические. Допуски. М., Издательство стандартов, 1989.

6. Юрьев Ю.А., Мурашев В.А., Шалобаев Е.В. Выбор вида сопряжения и вероятностная оценка мертвого хода передачи. Л.: ЛИТМО., 1977. 28 с.

Боковым зазором называется расстояние по нормали между нерабочими профилями зубьев колес, находящихся в непосредственном зацеплении. Боковой зазор необходим для: устранения возможного заклинивания зубчатой передачи при нагреве; обеспечения условий сборки; ограничения мертвого хода при реверсе зубчатых передач; компенсации погрешностей изготовления и монтажа передачи; устранения удара по рабочим профилям при разрыве контакта рабочих профилей вследствие динамических явлений.

Зубчатая передача с боковым зазором называется однопрофильной. Боковой зазор определяют в сечении, перпендикулярном к направлению зубьев, в плоскости, касательной к основным цилиндрам.

Основным показателем бокового зазора является гарантированный боковой зазор j nmin – наименьший предписанный зазор, который получается при выполнении требований стандартов. Гарантированный зазор при изготовлении передач является исходной величиной. Устанавливается шесть видов сопряжений зубчатых колес в передаче: A, B, C, D, E, H (рис. 1.8.12) и восемь видов допуска T jn на боковой зазор: x, y, z, a, b, c, d, h по мере убывания величины гарантированного бокового зазора и допуска на него соответственно. При сопряжении Н гарантированный боковой зазор 0.

Сопряжение вида В гарантирует минимальный боковой зазор, при котором исключается возможность заклинивания стальной или чугунной передачи от нагрева при разности температур колес и корпуса 25 °С.

А
B
C
D
E

Установлено шесть классов отклонений межосевого расстояния, обозначаемых в порядке убывания точности римскими цифрами от I до VI. Соответствие классов межосевого расстояния и видов сопряжения показано в табл. 1.8.5, это соответствие при необходимости может быть нарушено.

Боковой зазор технологически обеспечивается путем радиального дополнительного смещения исходного контура рейки E Hr от его номинального положения в тело зубчатого колеса. Номинальное положение соответствует плотному двухпрофильному зацеплению.



Показателями, обеспечивающими гарантированный боковой зазор, являются:

· для зубчатых колес: Е Hs , E W m s (+E W m i), E cs , E a”s (E a”i);

· для передачи с нерегулируемым расположением осей – f а r ;

· для передач с регулируемым расположением осей – f nmin .

Название этих показателей приведены ниже.


Рис. 1.8.13 - Смещение исходного контура

Наименьшее дополнительное смещение исходного контура – (-Е Hs) для зубчатых колес с внешним зацеплением (рис. 1.8.13), (+Е H i) для зубчатых колес с внутренним зацеплением. Допуск на дополнительное смещение исходного Т Н устанавливается в зависимости от допуска на радиальное биение зубчатого венца F r и вида сопряжения.

Отклонение длины общей нормали E W r – разность значений действительной и номинальной длины общей нормали W.

Наименьшее отклонение длины общей нормали -E Ws +E Wi для зубчатого колеса с внутренним зацеплением – наименьшее предписанное отклонение длины общей нормали, осуществляется с целью обеспечения в передаче гарантированного бокового зазора. Допуск на длину общей нормали Т W .

Средняя длина общей нормали W mr – средняя арифметическая из всех действительных длин общей нормали по зубчатому колесу. Среднюю длину общей нормали определяют по формуле: W = (W 1 + W 2 + …+ W Z)/z, где z число зубьев колеса.

Наименьшее отклонение средней длины общей нормали E W m s для зубчатого колеса с внешним зацеплением, +E W m i для зубчатого колеса с внутренним зацеплением, осуществляется с целью обеспечения в передаче гарантированного бокового зазора. Допуск на среднюю длину общей нормали Т W m .

Номинальная толщина зуба (по постоянной хорде) – толщина зуба по постоянной хорде, отнесенная к нормальному сечению, соответствующая номинальному положению исходного контура.

Наименьшее отклонение толщины зуба -E cs – наименьшее предписанное уменьшение постоянной хорды, осуществляемое с целью обеспечения в передаче гарантированного бокового зазора. Допуск на толщину зуба Т с .

Предельные отклонения измерительного межосевого расстояния :

· для зубчатых колес с внешними зубьями +E a”s – верхнее, -E a”i – нижнее;

· для зубчатых колес с внутренними зубьями -E a”s – верхнее, +E a”i – нижнее.

Это разность между допускаемым наибольшим или наименьшим предельным и номинальным межосевым расстоянием. Под номинальным измерительным межосевым расстоянием понимается расчетное межосевое расстояние при двухпрофильном зацеплении измерительного зубчатого колеса с контролируемым зубчатым колесом, имеющим наименьшее дополнительное смещение исходного контура.

Отклонение межосевого расстояния f а r – это разность между действительным и номинальным межосевыми расстояниями в средней торцовой плоскости передачи. Предельные отклонения межосевого расстояния обозначаются ±f а , наименьший гарантированный зазор обозначается f nmin . Последние два отклонения не зависят от степени точности, их назначают в зависимости от вида сопряжения.



© 2024 yanaorgo.ru - Сайт о массаже. В здоровом теле, здоровый дух