Жрд жидкостный ракетный двигатель. Жидкостные ракетные двигатели

Жрд жидкостный ракетный двигатель. Жидкостные ракетные двигатели

21.09.2019

Что первое приходит на ум при словосочетании «ракетные двигатели»? Конечно же, загадочный космос, межпланетные полеты, открытие новых галактик и манящее сияние далеких звезд. Во все времена небо притягивало к себе человека, оставаясь при этом неразгаданной тайной, но создание первой космической ракеты и ее запуск открыли человечеству новые горизонты исследований.

Ракетные двигатели по своей сути – это обычные реактивные двигатели с одной немаловажной особенностью: для создания реактивной тяги в них не используется атмосферный кислород в качестве окислителя топлива. Все, что нужно для его работы, находится либо непосредственно в его корпусе, либо в системах подачи окислителя и топлива. Именно эта особенность и дает возможность использовать ракетные двигатели в открытом космосе.

Видов ракетных двигателей очень много и все они разительно отличаются между собой не только особенностями конструкции, но и принципом работы. Именно поэтому каждый вид нужно рассматривать отдельно.

Среди основных рабочих характеристик ракетных двигателей особое внимание уделяется удельному импульсу – отношению величины реактивной тяги к массе расходуемого за единицу времени рабочего тела. Значение удельного импульса отображает эффективность и экономичность двигателя.

Химические ракетные двигатели (ХРД)

Этот тип двигателей на сегодняшний день является единственным, который массово используется для выведения в открытый космос космических аппаратов, кроме того, он нашел применение и в военной промышленности. Химические двигатели делятся на твердо- и жидкотопливные в зависимости от агрегатного состояния ракетного топлива.

История создания

Первыми ракетными двигателями были твердотопливные, а появились они несколько веков назад в Китае. С космосом их тогда мало что связывало, зато с их помощью можно было запускать военные ракеты. В качестве топлива использовался порошок, по составу напоминающий порох, только процентное соотношение его составляющих было изменено. В результате при окислении порошок не взрывался, а постепенно сгорал, выделяя тепло и создавая реактивную тягу. Такие двигатели с переменным успехом дорабатывались, совершенствовались и улучшались, но их удельный импульс все равно оставался малым, то есть конструкция была неэффективной и неэкономичной. Вскоре появились новые виды твердого топлива, позволяющие получить больший удельный импульс и развивать большую тягу. Над его созданием в первой половине ХХ века трудились ученые СССР, США и Европы. Уже во второй половине 40-х годов был разработан прототип современного топлива, используемого и сейчас.

Ракетный двигатель РД — 170 работает на жидком топливе и окислителе.

Жидкостные ракетные двигатели – это изобретение К.Э. Циолковского, который предложил их в качестве силового агрегата космической ракеты в 1903 году. В 20-х годах работы по созданию ЖРД начали проводиться в США, в 30-хх годах – в СССР. Уже к началу Второй мировой войны были созданы первые экспериментальные образцы, а после ее окончания ЖРД стали выпускаться серийно. Использовались они в военной промышленности для оснащения баллистических ракет. В 1957 году впервые в истории человечества был запущен советский искусственный спутник. Для его запуска использовалась ракета, оснащенная РЖД.

Устройство и принцип работы химических ракетных двигателей

Твердотопливный двигатель вмещает в своем корпусе топливо и окислитель в твердом агрегатном состоянии, причем контейнер с топливом – это одновременно и камера сгорания. Топливо обычно имеет форму стержня с центральным отверстием. В процессе окисления стержень начинает сгорать от центра к периферии, а газы, полученные в результате сгорания, выходят через сопло, образуя тягу. Это самая простая конструкция среди всех ракетных двигателей.

В жидкостных РД топливо и окислитель находятся в жидком агрегатном состоянии в двух раздельных резервуарах. По каналам подачи они попадают в камеру сгорания, где смешиваются и происходит процесс горения. Продукты сгорания выходят через сопло, образуя тягу. В качестве окислителя обычно используется жидкий кислород, а топливо может быть разным: керосин, жидкий водород и т.д.

Плюсы и минусы химических РД, их сфера применения

Достоинствами твердотопливных РД являются:

  • простота конструкции;
  • сравнительная безопасность в плане экологии;
  • невысокая цена;
  • надежность.

Недостатки РДТТ:

  • ограничение по времени работы: топливо сгорает очень быстро;
  • невозможность перезапуска двигателя, его остановки и регулирования тяги;
  • небольшой удельный вес в пределах 2000-3000 м/с.

Анализируя плюсы и минусы РДТТ, можно сделать вывод, что их использование оправдано только в тех случаях, когда нужен силовой агрегат средней мощности, достаточно дешевый и простой в исполнении. Сфера их использования – баллистические, метеорологические ракеты, ПЗРК, а также боковые ускорители космических ракет (ими оснащаются американские ракеты, в советских и российских ракетах их не использовали).

Достоинства жидкостных РД:

  • высокий показатель удельного импульса (порядка 4500 м/с и выше);
  • возможность регулирования тяги, остановки и перезапуска двигателя;
  • меньший вес и компактность, что дает возможность выводить на орбиту даже большие многотонные грузы.

Недостатки ЖРД:

  • сложная конструкция и пуско-наладочные работы;
  • в условиях невесомости жидкости в баках могут хаотично перемещаться. Для их осаждения нужно использовать дополнительные источники энергии.

Сфера применения ЖРД – это в основном космонавтика, так как для военных целей эти двигатели слишком дорогие.

Несмотря на то, что пока химические РД – единственные способные обеспечить вывод ракет в открытый космос, их дальнейшее усовершенствование практически невозможно. Ученые и конструкторы убеждены, что предел их возможностей уже достигнут, а для получения более мощных агрегатов с большим удельным импульсом необходимы другие источники энергии.

Ядерные ракетные двигатели (ЯРД)

Этот тип РД в отличие от химических вырабатывает энергию не при сгорании топлива, а в результате нагревания рабочего тела энергией ядерных реакций. ЯРД бывают изотопными, термоядерными и ядерными.

История создания

Конструкция и принцип работы ЯРД были разработаны еще в 50-хх годах. Уже в 70-хх годах в СССР и США были готовы экспериментальные образцы, которые успешно проходили испытания. Твердофазный советский двигатель РД-0410 с тягой в 3,6 тонны испытывался на стендовой базе, а американский реактор «NERVA» должен был устанавливаться на ракету «Сатурн V» до того, как спонсирование лунной программы было остановлено. Параллельно велись работы и над созданием газофазных ЯРД. Сейчас действуют научные программы по разработке ядерных РД, проводятся эксперименты на космических станциях.

Таким образом, действующие модели ядерных ракетных двигателей уже есть, но пока ни один из них так и не был задействован вне лабораторий или научных баз. Потенциал таких двигателей довольно высокий, но и риск, связанный с их использованием, тоже немалый, так что пока они существуют только в проектах.

Устройство и принцип действия

Ядерные ракетные двигатели бывают газо-, жидко- и твердофазными в зависимости от агрегатного состояния ядерного топлива. Топливо в твердофазных ЯРД – это ТВЭЛы, такие же, как в ядерных реакторах. Они находятся в корпусе двигателя и в процессе распада делящегося вещества выделяют тепловую энергию. Рабочее тело – газообразный водород или аммиак – контактируя с ТВЭЛом, поглощает энергию и нагревается, увеличиваясь в объеме и сжимаясь, после чего выходит через сопло под высоким давлением.

Принцип работы жидкофазного ЯРД и его устройство аналогично твердофазным, только топливо находится в жидком состоянии, что позволяет увеличить температуру, а значит и тягу.

Газофазные ЯРД работают на топливе в газообразном состоянии. Обычно в них используется уран. Газообразное топливо может удерживаться в корпусе электрическим полем или же находится в герметичной прозрачной колбе – ядерной лампе. В первом случае возникает контакт рабочего тела с топливом, а также частичная утечка последнего, поэтому кроме основной массы топлива в двигателе должен быть предусмотрен его запас для периодического пополнения. В случае с ядерной лампой утечки не происходит, а топливо полностью изолировано от потока рабочего тела.

Преимущества и недостатки ЯРД

Ядерные ракетные двигатели имеют огромное преимущество в сравнении с химическими – это высокий показатель удельного импульса. Для твердофазных моделей его величина составляет 8000-9000 м/с, для жидкофазных – 14000 м/с, для газофазных – 30000 м/с. Вместе с тем, их использование влечет за собой заражение атмосферы радиоактивными выбросами. Сейчас ведутся работы по созданию безопасного, экологичного и эффективного ядерного двигателя, и главным «претендентом» на эту роль является газофазный ЯРД с ядерной лампой, где радиоактивное вещество находится в герметичной колбе и не выходит наружу с реактивным пламенем.

Электрические ракетные двигатели (ЭРД)

Еще один потенциальный конкурент химических РД – электрический РД, работающий за счет электрической энергии. ЭРД может быть электротермическим, электростатическим, электромагнитным или импульсным.

История создания

Первый ЭРД был сконструирован в 30-х годах советским конструктором В.П. Глушко, хотя идея создания такого двигателя появилась еще в начале ХХ века. В 60-х годах ученые СССР и США активно работали над созданием ЭРД, и уже в 70-х годах первые образцы начали использоваться в космических аппаратах в качестве двигателей управления.

Устройство и принцип работы

Электроракетная двигательная установка состоит из самого ЭРД, строение которого зависит от его типа, систем подачи рабочего тела, управления и электропитания. Электротермический РД нагревает поток рабочего тела за счет тепла, выделяемого нагревательным элементом, или в электрической дуге. В качестве рабочего тела используется гелий, аммиак, гидразин, азот и другие инертные газы, реже – водород.

Электростатические РД делятся на коллоидные, ионные и плазменные. В них заряженные частицы рабочего тела ускоряются за счет электрического поля. В коллоидных или ионных РД ионизация газа обеспечивается ионизатором, высокочастотным электрическим полем или газоразрядной камерой. В плазменных РД рабочее тело – инертный газ ксенон – проходит через кольцевой анод и попадает в газоразрядную камеру с катод-компенсатором. При высоком напряжении между анодом и катодом вспыхивает искра, ионизирующая газ, в результате чего получается плазма. Положительно заряженные ионы выходят через сопло с большой скоростью, приобретенной за счет разгона электрическим полем, а электроны выводятся наружу катодом-компенсатором.

Электромагнитные РД имеют свое магнитное поле – внешнее или внутреннее, которое ускоряет заряженные частицы рабочего тела.

Импульсные РД работают за счет испарения твердого топлива под действием электрических разрядов.

Преимущества и недостатки ЭРД, сфера использования

Среди преимуществ ЭРД:

  • высокий показатель удельного импульса, верхний предел которого практически не ограничен;
  • малый расход топлива (рабочего тела).

Недостатки:

  • высокий уровень потребления электроэнергии;
  • сложность конструкции;
  • небольшая тяга.

На сегодняшний день использование ЭРД ограничено их установкой на космические спутники, а в качестве источников электроэнергии для них применяются солнечные батареи. Вместе с тем именно эти двигатели могут стать теми силовыми установками, которые дадут возможность исследовать космос, поэтому работы по созданию их новых моделей активно ведутся во многих странах. Именно эти силовые установки чаще всего упоминали фантасты в своих произведениях, посвященных покорению космоса, их же можно встретить и в научно-фантастических фильмах. Пока именно ЭРД является надеждой на то, что люди все же смогут путешествовать к звездам.

ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ (ЖРД) - ракетный двигатель , работающий на жидком ракетном топливе . Превращение топлива в реактивную газовую струю, создающую тягу, происходит в камере . В современных ЖРД используются как двухкомпонентные ракетные топлива , состоящие из окислителя и горючего, которые хранятся в отдельных баках, так и однокомпонентные ракетные топлива , являющиеся жидкостями, способными к каталитическому разложению. По роду используемого окислителя ЖРД бывают азотнокислотные, азоттетроксидные (окислитель - четырёхокись азота), кислородные, перекисьводородные, фторные и др. В зависимости от значения тяги различают ЖРД малой, средней и большой тяги. Условными границами между ними являются 10 кН и 250 кН (на ЛА устанавливались ЖРД с тягой от десятых долей Н до 8 МН). ЖРД характеризуются также удельным импульсом тяги , режимом работы, габаритами, удельной массой , давлением в камере сгорания, общим устройством и конструкцией основных агрегатов. ЖРД является основным типом космических двигателей и широко применяется также в высотных исследовательских ракетах, боевых баллистических ракетах дальнего действия, зенитных управляемых ракетах; ограниченно - в боевых ракетах других классов, на экспериментальных самолётах и т. д.

Основные проблемы при создании ЖРД : рациональный выбор топлива, удовлетворяющего энергетическим требованиям и условиям эксплуатации; организация рабочего процесса для достижения расчётного удельного импульса; обеспечение устойчивой работы на заданных режимах, без развитых низкочастотных и высокочастотных колебаний давления, вызывающих разрушительные вибрации двигателя; охлаждение ракетного двигателя, подверженного воздействию агрессивных продуктов сгорания при весьма высоких температурах (до 5000 К) и давлениях до многих десятков МПа (это воздействие усугубляется в некоторых случаях присутствием конденсированной фазы в сопле); подача топлива (криогенного, агрессивного и др.) при давлениях, доходящих для мощных двигателей до многих десятков МПа, и расходах до нескольких т/с; обеспечение минимальной массы агрегатов и двигателя в целом, работающих в весьма напряжённых режимах; достижение высокой надёжности.

ЖРД был предложен К. Э. Циолковским в 1903 году как двигатель для полёта в космос. Учёный разработал принципиальную схему ЖРД , указал наиболее выгодные ракетные топлива, исследовал вопросы устройства основных агрегатов. Практические работы по созданию ЖРД были начаты в 1921 году в США Р. Годдардом (R. Goddard). В 1922 году он впервые зарегистрировал тягу при испытании экспериментального ЖРД , а в 1926 году осуществил пуск небольшой жидкостной ракеты. В конце 20-х – начале 30-х гг. к разработке ЖРД приступили в Германии, СССР и других странах. В 1931 году были испытаны первые советские ЖРД ОРМ и ОРМ-1, созданные В. П. Глушко в Газодинамической лаборатории. В 1933 году испытана двигательная установка ОР-2 конструкции Ф. А. Цандера, а двигатель 10, созданный Группой изучения реактивного движения, обеспечил полёт жидкостной ракеты.

До начала 2-й мировой войны 1939-45 гг. в СССР и США появились опытные образцы ЖРД с тягой до нескольких кН, предназначенные для экспериментальных летательных аппаратов. Интенсивные работы в области ракетной техники, проводившиеся в Германии во время войны, вызвали появление разнообразных типов ЖРД боевого назначения, многие из которых производились серийно. Лучшими были ЖРД конструкции X. Вальтера (H. Walter) (в т.ч. ХВК 109-509А (HWK 109-509A)) и X. Зборовского (H. Zborowski), ЖРД зенитной управляемой ракеты «Вассерфаль» (Wasserfall) и баллистической ракеты Фау-2 (V-2). До 2-й половины 40-х гг. самыми крупными советскими ЖРД были Д-1-А-1100 и РД-1, разработанные Реактивным научно-исследовательским институтом. Первыми серийными советскими ЖРД стали двигатели РД-1 и РД-1ХЗ, созданные к концу войны в ГДЛ–ОКБ. Там же в 1947-53 гг. были разработаны первые в СССР мощные ЖРД : РД-100, РД-101, РД-103. В этот же период в США изготовлялся ЖРД с тягой ~ 350 кН для баллистической ракеты «Редстоун» (Redstone).

Дальнейшее развитие ЖРД и современное их состояние определила начатая в середине 50-х гг. в СССР и США разработка МБР и РН. Для их реализации потребовалось создать мощные, экономичные и компактные ЖРД . Первыми среди них были РД-107 и РД-108, с появлением которых тяга ЖРД увеличилась вдвое, тяга ДУ – в 10 раз. Удельный импульс ЖРД возрос почти на 30%, удельная масса снизилась более чем в 1,5 раза. Эти результаты стали возможны благодаря разработке принципиально новой конструкции ЖРД , позволившей перейти с топлива кислород - этиловый спирт на кислородно-керосиновое при одновременном увеличении давления в камере сгорания в 2–2,5 раза.

С начала 60-х гг. на ракеты-носители (РН) начали также применяться ЖРД , работающие на высококипящих топливах. Первым из них был РД-214. Большое значение для развития космонавтики имело создание в середине 60-х гг. кислородно-водородных ЖРД (предназначены для верхних ступеней РН), которые по удельному импульсу превосходят кислородно-керосиновые на 30%. Т.к. кислородно-водородное топливо по сравнению с кислородно-керосиновым требует при той же массе втрое большего объёма для своего размещения, а баки водорода приходится снабжать теплоизоляцией, то число Циолковского получается для кислородно-водородного топлива на 40% большим. Этот недостаток с избытком компенсируется высокой экономичностью кислородно-водородных ЖРД . При равной стартовой массе РН они способны вывести на околоземную орбиту втрое больший полезный груз, чем кислородно-керосиновые ЖРД .

Осваивая всё более эффективные топлива, конструкторы ЖРД стремились одновременно к тому, чтобы преобразовать химическую энергию топлив в кинетическую энергию реактивной струи с возможно большим КПД . С этой целью была разработана схема ЖРД с дожиганием генераторного газа в камере. Для реализации этой схемы потребовалось создать камеры, работающие в условиях высоких механических и тепловых нагрузок, а также компактные агрегаты питания большой мощности. ЖРД с дожиганием с середины 60-х гг. широко применяются на РН, в частности используются на всех ступенях РН «Протон».

Наряду с мощными космическими ЖРД созданы многочисленные ЖРД средней и малой тяги. Безотказная работа двигателей космических аппаратов (КА) обеспечивается в большой степени использованием высококипящих однокомпонентных и самовоспламеняющихся ракетных топлив , хранение которых на борту КА не вызывает трудностей. ДУ с ЖРД на однокомпонентном топливе проще по устройству, но имеют существенно меньший удельный импульс. К середине 60-хчислогг. во вспомогательных ЖРД получила наибольшее применение перекись водорода, которая затем начала вытесняться гидразином и двухкомпонентными топливами. Использование гидразина позволило повысить удельный импульс ЖРД на однокомпонентном топливе примерно на 40%.

Большинство советских космических ЖРД создано в ГДЛ-ОКБ В. П. Глушко, ОКБ А. М. Исаева и ОКБ С. А. Косберга. Двигатели РД-107, РД-108, РД-214, РД-216, РД-253 и другие конструкции ГДЛ-ОКБ обеспечили старт всех советских РН; на вторых ступенях ряда РН также установлены ЖРД конструкции ГДЛ-ОКБ: РД-119, РД-219 и др. Двигатели ОКБ Косберга установлены на верхних ступенях РН «Восток», «Восход» («Союз») и «Протон». Двигатели ОКБ Исаева используются в основном на искусственных спутниках Земли (ИСЗ), межпланетных КА и космических кораблях (КК) (КРД-61, КДУ-414, ТДУ-1, КТДУ-5А и др.).

Крупнейшие из зарубежных организаций, занятых разработкой ЖРД , находятся в США. Ведущей является фирма «Рокетдайн» (Rocketdyne), которой созданы ЖРД Джей-2 (J-2), ЛР-79-НА (LR-79-NA), ЛР-89-НА (LR-89-NA), ЛР-105-НА (LR-105-NA), РС-2701 (RS-2701), Эйч-1 (H-1), Ф-1 (F-1), ССМЭ (SSME), многочисленные ЖРД средней и малой тяги на высококипящем двухкомпонентном топливе. Большинство упомянутых мощных ЖРД создано под руководством С. Гофмана (S. Hoffman). Фирмой «Аэроджет Дженерал Корпорейшн» (Aerojet General Corporation) создан ряд ЖРД на высококипящем двухкомпонентном топливе, в т.ч. ЖРД ЛР-87-АДжей-5 (LR-87-AJ-5) и ЛР-91-АДжей-5 (LR-91-AJ-5), серия ЖРД средней тяги АДжей-10 (AJ-10), включающая АДжей-10-137 (AJ-10-137) и АДжей-10-138 (AJ-10-138). Фирма «Пратт энд Уитни» (Pratt & Whitney) создала первый в мире кислородно-водородный ЖРД РЛ-10 (RL-10), фирма «Белл Aэроспейс Tекстрон» (Bell Aerospace Textron) - многочисленные вспомогательные ЖРД , а также ЖРД средней тяги ЛР-81-БА-9 (LR-81-BA-9), фирма «ТРВ» - ЖРД средней тяги ЛМДЭ (LMDE), фирма «Марквардт» (Marquardt)- ряд ЖРД на высококипящем двухкомпонентном топливе для КК и межпланетных КА. В США создано несколько десятков типов гидразиновых ЖРД (в полёте испытаны ЖРД с тягой от 0,4 Н до 2,7 кН). В числе разработчиков ЖРД для межпланетных КА - фирма «Риэкшен моторс» (Reaction Motors), создавшая также мощный ЖРД ЛР-99-РМ-1 (LR-99-RM-1). Наиболее известные из западноевропейских ЖРД - АшМ-7 (HM-7), «Валуа» (Valois), «Вексен» (Vexen), «Викинг» (Viking, Франция), «Гамма-2» (Gamma), «Гамма-8», РЗет-2 (RZ-2, Великобритания). В Западной Европе также разрабатываются ЖРД малой тяги на двух- и однокомпонентном топливах для ИСЗ. Япония производит по лицензии американские ЖРД ЛР-79-НА для собственного варианта РН «Дельта» (Delta). Для одной из ступеней этой РН фирмой «Мицубиси» (Mitsubishi) разработан ЖРД на высококипящем топливе тягой 53 кН с вытеснительной подачей. На стендах испытаны кислородно-водородные ЖРД тягой до 0,1 МН с насосной подачей. В китайских РН используются ЖРД тягой 0,7 МН с насосной подачей высококипящего топлива.

Космические ЖРД разнообразны по устройству и характеристикам. Наибольшее различие существует между мощными ЖРД , обеспечивающими разгон РН, и ЖРД реактивных систем управления КА. Первые работают на двухкомпонентном топливе. Тяга этих ЖРД достигает 8 МН (при суммарной тяге ДУ до 40 МН), размеры - несколько метров, а масса - несколько тонн. Они рассчитаны обычно на однократное включение (кроме некоторых ЖРД верхних ступеней РН) и работу в течение 2-10 мин при изменении параметров в узких пределах. К этим ЖРД предъявляется требование обеспечивать высокий удельный импульс при малых габаритах и массе. Поэтому в них применяется насосная подача топлива в камеру (исключение составляют ЖРД «Вексен» и «Валуа»). С этой целью в ЖРД предусматривается турбонасосный агрегат (ТНА) и газогенератор (ГГ). ТНА содержит высоконапорные топливные насосы (обычно осецентробежные) и приводящую их в действие турбину, которая вращается газом, получаемым в ГГ. В ЖРД без дожигания отработанный в турбине генераторный газ сбрасывается в выхлопной патрубок, рулевое сопло или сопло камеры. В ЖРД с дожиганием этот газ поступает в камеру для дожигания с остальной частью топлива.

В ЖРД без дожигания через ГГ может расходоваться 2-3% всего топлива, и целесообразный предел давления в камере сгорания ограничен значением ~ 10 МПа, что связано с потерями удельного импульса на привод ТНА: для ЖРД в целом этот параметр ниже, чем для камеры, т.к. дополнительная тяга, создаваемая истечением отработанного генераторного газа, невелика. Причиной тому являются малые значения давления и температуры этого газа. Для ЖРД РД-216 они составляют, например, 0,12 МПа и 870 К соответственно; при этом потери удельного импульса достигают 1,5% (свыше 40 м/с). С повышением давления в камере сгорания наблюдается увеличение её удельного импульса, но для этого приходится увеличивать расход генераторного газа (для обеспечения потребной мощности топливных насосов). С некоторого момента всё возрастающие потери удельного импульса на привод ТНА уравновешивают, а затем превышают прирост удельного импульса камеры. В ЖРД с дожиганием через ГГ расходуется значит, часть всего топлива (20-80%), однако привод ТНА осуществляется без ухудшения экономичности ЖРД (значения удельного импульса камеры и ЖРД совпадают). В камерах сгорания этих ЖРД удаётся реализовать давление 15-25 МПа (давление в ГГ приблизительно вдвое больше). Для мощных ЖРД с насосной подачей топлива удельный импульс достигает 3430 м/с при использовании кислородно-керосинового топлива и 4500 м/с при использовании кислородно-водородного; удельная масса ЖРД может составлять всего 0,75-0,85 г/Н.

Кроме камеры, ТНА и ГГ, мощные ЖРД содержат топливные трубопроводы с сильфонными шлангами и компенсаторами угловых и линейных перемещений, облегчающими сборку и установку ЖРД , а также обеспечивающими разгрузку от термических напряжений и позволяющими производить отклонение камеры с целью управления движением РН; трубопроводы генераторного газа и дренажа топлива; устройства и системы запуска ракетного двигателя ; агрегаты автоматики с электроприводами, пневмо-, пиро- и гидросистемами и устройствами для управления работой ЖРД (в т.ч. для его дросселирования ); агрегаты системы аварийной защиты; датчики системы телеметрических измерений; электрические кабельные стволы для подачи сигналов на агрегаты автоматики и приёма сигналов от телеметрических датчиков; теплоизоляционные чехлы и экраны, обеспечивающие надлежащую температуру в двигательном отсеке и исключающие перегрев либо переохлаждение отдельных элементов; элементы системы наддува баков (теплообменники, смесители и т. п.); шарнирный подвес или раму для крепления ЖРД к РН (рама, воспринимающая тягу, является одновременно элементом, на котором собирается двигатель); нередко - рулевые камеры и сопла с системами, обеспечивающими их работу; элементы общей сборки (кронштейны, крепёжные детали, уплотнения). По устройству различают блочные жидкостные ракетные двигатели , одно- и многокамерные (с питанием нескольких камер от одного ТНА).

ЖРД реактивных систем управления относятся к двигателям малой тяги, их масса обычно не достигает 10 кг, а высота 0,5 м; масса многих ЖРД не превышает 0,5 кг, и они умещаются на ладони. Характерной особенностью указанных ЖРД является работа в импульсном режиме (за несколько лет функционирования КА суммарное число включений ЖРД может достичь нескольких сотен тысяч, а наработка нескольких часов). Эти ЖРД представляют собой одностенные камеры, снабжённые пуско-отсечными топливными клапанами, и рассчитаны на вытеснительную подачу высококипящего топлива (двухкомпонентного самовоспламеняющегося или однокомпонентного). Давление в камерах сгорания указанных ЖРД , определяемое главным образом давлением наддува баков ДУ и гидравлическим сопротивлением питающих магистралей, находится в диапазоне 0,7-2,3 МПа. В том случае, когда газ для наддува топливных баков размещён в самих баках, его давление по мере расходования топлива снижается, что приводит к ухудшению характеристик ЖРД . Сравнительно высокий удельный импульс ЖРД (до 3050 м/с для двухкомпонентного топлива и до 2350 м/с для гидразина) достигается за счёт относительно больших размеров реактивного сопла, что обеспечивает расширение продуктов сгорания до очень малого давления. Несмотря на небольшую абсолютную массу ЖРД реактивных систем управления, их удельная масса велика (при уменьшении тяги от 500 до 1 Н возрастает приблизительно с 5 до 150 г/Н).

ЖРД космических аппаратов занимают по своим характеристикам промежуточное положение между мощными ЖРД ракет-носителей и ЖРД реактивных систем управления. Их тяга охватывает диапазон от сотен Н до десятков кН и может быть как нерегулируемой, так и регулируемой; они могут непрерывно работать десятые доли секунд и несколько тысяч секунд при числе включений от 1 до нескольких десятков. В указанных ЖРД применяются те же типы топлив, что и в ЖРД реактивных систем управления (однокомпонентное топливо используется только в ЖРД малой тяги).

В планах дальнейшего освоения космоса ЖРД отводится большая роль. Мощные ЖРД , рассчитанные на экономичное использование эффективных топлив, по-прежнему находятся в центре внимания. К 1981 году создан кислородно-водородный ЖРД с тягой свыше 2 МН, предназначенный для разгона ЛА от старта до вывода на околоземную орбиту. Благодаря достижениям в области криогенной техники и теплоизоляционных материалов становится целесообразным создание ЖРД на низкокипящих топливах, развивающих высокий удельный импульс, для использования в КА, функционирующих в космосе. Прогресс в разработке ЖРД с тягой до нескольких десятков кН, работающих на топливах, содержащих фтор и его производные (см., например, РД-301), делает реальным применение фторных ЖРД в разгонных блоках РН и в автоматических КА, которые будут совершать полёты к планетам. При стендовых испытаниях в 1977 году экспериментального кислородно-водородного ЖРД (тяга 0,1 МН), разрабатываемого для этих целей, достигнут удельный импульс 4690 м/с. Проводятся экспериментальные исследования различных проблем создания ЖРД на металлсодержащем топливе .

Наряду с освоением для ЖРД новых топлив ведутся поиски технических принципов, обеспечивающих дальнейшее увеличение КПД и уменьшение габаритов и массы ЖРД . Улучшение параметров, достигаемое путём увеличения давления в камере, с ростом давления становится всё менее ощутимым, а трудности создания ЖРД всё более возрастают. Увеличение указанного параметра свыше 25-30 МПа является малоэффективным и трудно реализуемым. Проявляется интерес к ЖРД , снабжённым соплами с центральным телом . С целью снижения стоимости запуска полезных грузов разработаны ЖРД (для КА многократного использования), рассчитанные на несколько десятков полётов и ресурс в несколько часов при малом объёме межполётных регламентных работ.

История

На возможность использования жидкостей, в том числе жидких водорода и кислорода, в качестве топлива для ракет указывал К. Э. Циолковский в статье «Исследование мировых пространств реактивными приборами», опубликованной в 1903 году. Первый работающий экспериментальный ЖРД построил американский изобретатель Роберт Годдард в 1926 г. Аналогичные разработки в 1931-1933 гг. проводились в СССР группой энтузиастов под руководством Ф. А. Цандера. Эти работы были продолжены в организованном в 1933 г. РНИИ, но в 1938 г. тематика ЖРД в нём была закрыта, а ведущие конструкторы С. П. Королёв и В. П. Глушко были репрессированы, как «вредители».

Наибольших успехов в разработке ЖРД в первой половине XX в. добились немецкие конструкторы Вальтер Тиль, Гельмут Вальтер, Вернер фон Браун и др. В ходе Второй мировой войны они создали целый ряд ЖРД для ракет военного назначения: баллистической Фау-2, зенитных Вассерфаль, Шметтерлинг, Райнтохтер R3. В Третьем рейхе к 1944 г. фактически была создана новая отрасль индустрии - ракетостроение, под общим руководством В. Дорнбергера, в то время, как в других странах разработки ЖРД находились в экспериментальной стадии.

По окончании войны разработки немецких конструкторов подтолкнули исследования в области ракетостроения в СССР и в США, куда эмигрировали многие немецкие учёные и инженеры, в том числе В. фон Браун. Начавшаяся гонка вооружений и соперничество СССР и США за лидерство в освоении космоса явились мощными стимуляторами разработок ЖРД.

В 1957 г. в СССР под руководством С. П. Королёва была создана МБР Р-7, оснащённая ЖРД РД-107 и РД-108, на тот момент самими мощными и совершенными в мире, разработанными под руководством В. П. Глушко. Эта ракета была использована, как носитель первых в мире Искусственных спутников земли, первых пилотируемых космических аппаратов и межпланетных зондов.

В 1969 г. в США был запущен первый космический корабль серии Аполлон, выведенный на траекторию полёта к Луне ракетой-носителем Сатурн-5, первая ступень которой была оснащена 5-ю двигателями F-1. F-1 по настоящее время является самым мощным среди однокамерных ЖРД, уступая по тяге четырёхкамерному двигателю РД-170, разработанному КБ «Энергомаш» в Советском Союзе в 1976 г.

В настоящее время космические программы всех стран базируются на использовании ЖРД.

Устройство и принцип действия двукомпонентного ЖРД

Рис. 1 Схема двукомпонентного ЖРД 1 - магистраль окислителя 2 - магистраль горючего 3 - насос окислителя 4 - насос горючего 5 - турбина 6 - газогенератор 7 - клапан газогенератора (окислитель) 8 - клапан газогенератора (горючее) 9 - главный клапан окислителя 10 - главный клапан горючего 11 - выхлоп турбины 12 - смесительная головка 13 - камера сгорания 14 - сопло

Существует довольно большое разнообразие схем устройства ЖРД, при единстве главного принципа их действия. Рассмотрим устройство и принцип действия ЖРД на примере двукомпонентного двигателя с насосной подачей топлива, как наиболее распространённого, схема которого стала классической. Другие типы ЖРД (за исключением трёхкомпонентного) являются упрощенными вариантами рассматриваемого, и при их описании достаточно будет указать упрощения.

На рис. 1 схематически представлено устройство ЖРД.

Компоненты топлива - горючее (1) и окислитель (2) поступают из баков на центробежные насосы (3, 4), приводимые в движение газовой турбиной (5). Под высоким давлением компоненты топлива поступают на форсуночную головку (12) - узел, в котором размещены форсунки, через которые компоненты нагнетаются в камеру сгорания (13), перемешиваются и сгорают, образуя нагретое до высокой температуры газообразное рабочее тело, которое, расширяясь в сопле, совершает работу и преобразует внутреннюю энергию газа в кинетическую энергию его направленного движения. Через сопло (14) газ истекает с большой скоростью, сообщая двигателю реактивную тягу.

Компоненты топлива

Выбор компонентов топлива является одним из важнейших решений при проектировании ЖРД, предопределяющий многие детали конструкции двигателя и последующие технические решения. Поэтому выбор топлива для ЖРД выполняется при всестороннем рассмотрении назначения двигателя и ракеты, на которой он устанавливается, условий их функционирования, технологии производства, хранения, транспортировки к месту старта и т. п.

Одним из важнейших показателей, характеризующих сочетание компонентов является удельный импульс, который имеет особенно важное значение при проектировании ракет-носителей космических аппаратов, так как от него в сильнейшей степени зависит соотношение массы топлива и полезного груза, а следовательно, размеры и масса всей ракеты, которые при недостаточно высоком значении удельного импульса могут оказаться нереальными.

Управление ракетой

В жидкостных ракетах двигатели часто помимо основной функции - создания тяги, выполняют также роль органов управления полётом. Уже первая управляемая баллистическая ракета Фау-2 управлялась с помощью 4 графитных газодинамических рулей, помещённых в реактивную струю двигателя по периферии сопла. Отклоняясь, эти рули отклоняли часть реактивной струи, что изменяло направление вектора тяги двигателя, и создавало момент силы относительно центра масс ракеты, что и являлось управляющим воздействием. Этот способ заметно снижает тягу двигателя, к тому же графитные рули в реактивной струе подвержены сильной эрозии и имеют очень малый временной ресурс.

В современных системах управления ракетами используются поворотные камеры ЖРД, которые крепятся к несущим элементам корпуса ракеты с помощью шарниров, позволяющих поворачивать камеру в одной или в двух плоскостях. Компоненты топлива подводятся к камере с помощью гибких трубопроводов - сильфонов. При отклонении камеры от оси, параллельной оси ракеты, тяга камеры создаёт требуемый управляющий момент силы. Поворачиваются камеры гидравлическими или пневматическими рулевыми машинками, которые исполняют команды, вырабатываемые системой управления ракетой.

В отечественном космическом носителе Союз помимо 20 основных, неподвижных камер двигательной установки имеются 12 поворотных (каждая - в своей плоскости), управляющих камер меньшего размера. Рулевые камеры имеют общую топливную систему с основными двигателями.

Из 11 маршевых двигателей (всех ступеней) ракеты-носителя Сатурн-5 девять (кроме центральных 1-й и 2-й ступеней) являются поворотными, каждый - в двух плоскостях. При использовании основных двигателей в качестве управляющих рабочий диапазон поворота камеры составляет не более ±5°: ввиду большой тяги основной камеры и расположения её в кормовом отсеке, то есть на значительном расстоянии от центра масс ракеты, даже небольшое отклонение камеры создаёт значительный управляющий момент.

Помимо поворотных камер, иногда используются двигатели, служащие только для целей управления и стабилизации летательного аппарата. Две камеры с противоположно направленными соплами жёстко закрепляются на корпусе аппарата таким образом, чтобы тяга этих камер создавала момент силы вокруг одной из главных осей аппарата. Соответственно, для управления по двум другим осям также устанавливаются свои пары управляющих двигателей. Эти двигатели (как правило, однокомпонентные) включаются и выключаются по команде системы управления аппаратом, разворачивая его в требуемом направлении. Такие системы управления обычно используются для ориентации летательных аппаратов в космическом пространстве.

  • тягу невозможно контролировать
  • после зажигания двигатель нельзя отключить или запустить повторно

Недостатки означают, что твердотопливные ракеты полезны для непродолжительных задач (ракеты) или систем ускорения. Если вам понадобится управлять двигателем, вам придется обратиться к системе жидкого топлива.

Жидкотопливные ракеты

В 1926 году Роберт Годдард испытал первый двигатель на основе жидкого топлива. Его двигатель использовал бензин и жидкий кислород. Также он пытался решить и решил ряд фундаментальных проблем в конструкции ракетного двигателя, включая механизмы накачки, стратегии охлаждения и рулевые механизмы. Именно эти проблемы делают ракеты с жидким топливом такими сложными.

Основная идея проста. В большинстве жидкотопливных ракетных двигателях топливо и окислитель (например, бензин и жидкий кислород) закачиваются в камеру сгорания. Там они сгорают, чтобы создать поток горячих газов с высокой скоростью и давлением. Эти газы проходят через сопло, которое еще больше их ускоряет (от 8000 до 16 000 км/ч, как правило), а после выходят. Ниже вы найдете простую схему.

Эта схема не показывает фактические сложности обычного двигателя. К примеру, норальное топливо - это холодный жидкий газ вроде жидкого водорода или жидкого кислорода. Одной из крупных проблем такого двигателя является охлаждение камеры сгорания и сопла, поэтому холодная жидкость сначала циркулирует вокруг перегретых частей, чтобы охладить их. Насосы должны генерировать чрезвычайно высокое давление, чтобы преодолеть давление, которое создает в камере сгорания сжигаемое топливо. Вся эта подкачка и охлаждение делает ракетный двигатель больше похожим на неудачную попытку сантехнической самореализации. Давайте посмотрим на все виды комбинаций топлива, используемого в жидкотопливных ракетных двигателях:

  • Жидкий водород и жидкий кислород (основные двигатели космических шаттлов).
  • Бензин и жидкий кислород (первые ракеты Годдарда).
  • Керосин и жидкий кислород (использовались на первой ступени «Сатурна-5» в программе «Аполлон»).
  • Спирт и жидкий кислород (использовались в немецких ракетах V2).
  • Четырехокись азота/монометилгидразин (использовались в двигателях «Кассини»).

Будущее ракетных двигателей

Мы привыкли видеть химические ракетные двигатели, которые сжигают топливо для производства тяги. Но есть масса других способов для получения тяги. Любая система, которая способна толкать массу. Если вы хотите ускорить бейсбольный мячик до невероятной скорости, вам нужен жизнеспособный ракетный двигатель. Единственная проблема при таком подходе - это выхлоп, который будет тянуться через пространство. Именно эта небольшая проблема приводит к тому, что ракетные инженеры предпочитают газы горящим продуктам.

Многие ракетные двигатели крайне малы. К примеру, двигатели ориентации на спутниках вообще не создают большую тягу. Иногда на спутниках практически не используется топливо - газообразный азот под давлением выбрасывается из резервуара через сопло.

Новые конструкции должны найти способ ускорить ионы или атомные частицы до высокой скорости, чтобы сделать тягу более эффективной. А пока будем пытаться делать и ждать, что там еще выкинет Элон Маск со своим SpaceX.

На прошлой неделе я описывал устройство и принцип работы всех применяемых в космонавтике химических ракетных двигателей, в том числе и жидкостный ракетный двигатель (ЖРД). Для понимания принципа работы я привел простейшую схему:

На ней все до банальности просто: трубы с компонентами топлива входят в камеру сгорания, где топливо горит, а продукты сгорания выбрасываются через сопло назад, толкая двигатель вперед.

Так как же такая простая схема на деле превращается в такое сложное переплетение всяких трубок, проводов и устройств?

Начнем с того, что компоненты топлива в камеру сгорания надо как-то подавать. Самый простой способ - подать в баки с горючим и окислителем сжатый газ, чтобы его давление вытесняло из баков жидкость в камеру сгорания.

При всей своей простоте у вытеснительной подачи есть серьезный недостаток: давление газа наддува должно быть выше рабочего давления в камере сгорания, а там ведь десятки, а то и сотни атмосфер. Для реализации такой схемы придется делать баки очень прочными, чтобы они выдержали такое чудовищное давление, а это значит, что их стенки будут очень толстыми и тяжелыми. Масса - враг номер один в ракетно-космической технике, поэтому такое решение не годится. На практике вытеснительная система подачи применяется в двигателях с рабочим давлением в камере сгорания меньше 10 атмосфер. Это могут быть двигатели малой тяги для ориентации космического аппарата и маневрирования.

Для маршевых двигателей ракетных ступеней применяют такую схему подачи топлива, где компоненты топлива под действием небольшого давления газа наддува поступают в насосы, которые в свою очередь за счет вращения крыльчаток (как обычная водяная помпа, только прочнее, мощнее и тяжелее) подают жидкости в камеру сгорания под большим давлением.

Крыльчатки насосов должны вращаться с огромной скоростью, чтобы поддерживать давление в сотни атмосфер, поэтому для их привода нужно что-то посильнее обычного электромотора. Таким приводом служит турбина - такая же крыльчатка, которая вращается под действием проходящего через нее рабочего газа. Эта крыльчатка находится на одном валу с крыльчатками насосов для горючего и окислителя, и вся конструкция называется турбонасосный агрегат (ТНА).

Но откуда берется рабочий газ? Его производит специальное устройство - газогенератор . По сути это маленький однокомпонентный ЖРД, только вместо сопла из его рабочей камеры выходит труба, подающая так называемый парогаз (смесь кислорода и раскаленного водяного пара) в турбину ТНА. После турбины отработанный парогаз выбрасывается наружу через специальный патрубок. Таким образом у нас в схеме появился бак с перекисью водорода, газогенератор, ТНА и трубопроводы, соединяющие все это добро:

Также не следует забывать про вентили, которыми автоматика управляет потоками жидкостей и газов в трубах. К каждому такому вентилю идут провода, что вносит свой вклад в этот клубок.

В более мощных двигателях в газогенератор подаются те же компоненты топлива, которые используются в основной камере сгорания. В этом случае бак с перекисью не нужен, но из основных баков выходят дополнительные трубы, а на валу ТНА появляются насосы для подачи жидкостей в газогенератор. Для запуска этой системы приходится применять пиротехнические шашки для первоначальной раскрутки ТНА.

На этом видео стендовых испытаний двигателя на 15-й секунде хорошо видно, как из патрубка рядом с соплом выбрасывается отработанный парогаз:

Двигатели, где газ после ТНА выбрасывается наружу, называются ЖРД открытого цикла. В таких двигателях можно добиваться большего давления в камере сгорания, а его ТНА меньше подвержен износу, чем в ЖРД закрытого цикла, в которых газ подается в сопло, где дожигается, принимая участие в создании тяги. ЖРД закрытого цикла обладают большим коэффициентом полезного действия (надеюсь, помните, что это такое из школьной физики? ;)).

В большинстве космических ракет используются топливные пары, в которых один или оба компонента имеют очень низкую температуру кипения (жидкий кислород и жидкий водород). Пока ракета стоит на старте, эти криогенные жидкости в баках кипят и повышают давление. Чтобы баки не разорвало, их нужно дренировать. Дренаж - это сброс в атмосферу газов, образующихся при кипении криогенных жидкостей. Для этого баки с этими жидкостями оснащаются специальной трубой с вентилем, выходящей из корпуса ракеты наружу.

На этом видео на 19.25 виден туман, идущий от ракеты сверху справа. Это дренаж кислорода. Водород при дренировании надо отводить подальше, чтобы он не образовывал с кислородом взрывоопасную смесь, поэтому его сброс виден а мачте за ракетой.

Вот, вроде бы, получили мы рабочую схему ЖРД, но только вот проблема: проработает такая схема не больше нескольких секунд, а потом камера сгорания и сопло расплавятся. Уж слишком там горячо. Значит стенки камеры сгорания и сопла надо охлаждать. Для этого применяют два способа: жидкостное охлаждение и паровую завесу.

Для осуществления первого способа стенки камеры сгорания и сопла пронизаны множеством каналов, по которым течет горючее перед тем, как попасть внутрь камеры сгорания. Система работает по принципу холодильника самогонного аппарата.

Паровая завеса - это слой паров горючего, отделяющий горящую топливную смесь от стенок камеры сгорания. Образуется он при впрыске некоторого количества горючего через специальные форсунки в стенках камеры сгорания и корпуса двигателя:

В этом видео, посвященном двигателю F-1 ракеты Сатурн-5, с 49-й секунды видно между срезом сопла и ярким пламенем некую темную область. Это и есть завеса, защищающая сопло от адского жара потока газов.

Таким образом схема ЖРД из первоначальной простоты превратилась в это:

Также стоит сказать пару слов о строении головки камеры сгорания. На этой фотографии представлена головка камеры в разрезе. Видно, что у нее довольно сложное строение.

Дело в том, что для достижения надежного зажигания и стабильного горения нужно хорошо перемешать компоненты топлива, причем, в нужной пропорции. Для этого применяются специальные схемы расположения форсунок:

Кружочками отмечены форсунки подачи окислителя, точками - горючего.
а) Шахматная схема подачи. Применяется для топливных пар, в которых горючее и окислитель смешиваются примерно один к одному.
б) Сотовая схема подачи. Самая эффективная: каждая форсунка подачи горючего окружена форсунками подачи окислителя.
в) Концентрическая схема подачи.
Обратите внимание, что во всех трех схемах внешнее кольцо форсунок подает только горючее. Это нужно для предотвращения коррозии стенок камеры сгорания под действием окислителя.

Сами форсунки тоже имеют сложную конструкцию. Например, вот такая центробежная форсунка:

В некоторые форсунки вставлен шнек - устройство наподобие винта в мясорубке. Все эти хитрости нужны для одной цели: максимально приблизить зону смешивания компонентов топлива к головке камеры сгорания, чтобы сделать камеру меньше и легче.

Теперь нам осталось поговорить о системах зажигания. Тут все достаточно просто: внутри камеры сгорания помещается некое устройство, дающее огонь. Таким устройством может быть пороховая шашка, электродуговой разрядник, газовая горелка наподобие сварочной. В последнее время проводятся эксперименты по разработке лазерных систем. В ракетах Союз пошли по совсем простому пути: пиротехнические шашки поместили в камеры сгорания на обычных деревянных палках:

А для топливной пары НДМГ+АТ (несимметричный диметилгидразин + азотный тетраоксид), используемой на ракетах Протон, системы зажигания и вовсе не нужны, так как компоненты топлива самовоспламеняются при смешивании.

И последнее, о чем мы сегодня поговорим, - запуск ЖРД в невесомости.

Это серьезная проблема, так как в невесомости жидкость в баках перемешивается с газом, слипается в пузыри и не поступает в трубопроводы. Советские конструкторы первых ракет, оснащенных третьей ступенью, пошли в обход этой проблемы: двигатель третьей ступени запускался до того, как останавливался двигатель второй ступени. Для выхода газовой струи двигателя предназначалась решетчатая конструкция между второй и третьей ступенями. Наглядно этот процесс показан на времени 11.25 здесь:

Но все время так не поделаешь: для баллистической схемы выведения и для орбитальных маневров все-таки придется запускать ЖРД в невесомости.

Самый простой вариант: заключить жидкость в баке в полимерный мешок, который предотвратит перемешивание жидкости с газом:

Но такой способ не годится для баков большого объема: слишком непрочен мешок. Поэтому система с мешком применяется для запуска двигателей малой тяги, которые работают несколько секунд, создавая ускорение, достаточное для осаживания жидкостей в больших баках.

На этом видео с самого начала виден этот процесс: три газовые струи исходят как раз от двигателей малой тяги, а через несколько секунд происходит зажигание основного двигателя.

Вот такие инженерные хитрости приходится применять для решения всех проблем, связанных с работой ЖРД. Расплатой за это становится сложность конструкции двигателя, превращающегося в такой клубок, что без бутылки и не разберешься.



© 2024 yanaorgo.ru - Сайт о массаже. В здоровом теле, здоровый дух