Иммунологическое обследование при вирусной инфекции. Активированные лимфоциты в анализе крови человека - что это значит? Что такое т клетки активированные

Иммунологическое обследование при вирусной инфекции. Активированные лимфоциты в анализе крови человека - что это значит? Что такое т клетки активированные

Для некоторых бактерий (возбудителей туберкулеза, лепры, чумы) макрофаги являются "средой обитания". Оказавшись в результате фагоцитоза в фаголизосомах, возбудители становятся защищенными как от антител, так и от цитотоксических T-лимфоцитов.

Подавляя активность лизосомальных ферментов, эти бактерии активно размножаются внутри клетки и становятся таким образом причиной острого инфекционного процесса. Неслучайно упомянутые в качестве примера заболевания относят к категории особо опасных инфекций.

В этой достаточно сложной ситуации в организме тем не менее имеются силы, препятствующие распространению возбудителей, и связаны они в первую очередь с CD4 Т-клетками воспаления.

Участие данного типа лимфоцитов в организации иммунного ответа реализуется через активацию макрофагов. Активированные макрофаги не только справляются с внутриклеточными патогенами, но и приобретают в ряде случаев дополнительные свойства, не связанные с антибактериальным действием, например, способность разрушать раковые клетки.

Для активации макрофагов требуется два сигнала.

Первый из них - интерферон-гамма (ИФ-гамма) . Это наиболее характерный цитокин, продуцируемый CD4 Т-клетками воспаления. Хелперные T-клетки не секретируют данный цитокин и не могут активировать макрофаги обычным путем.

Вторым сигналом для активации макрофагов служит поверхностный ФНО-альфа, который индуцируется к экспрессии после распознавания Т-клетками воспаления иммуногена на мембране макрофагов. Антитела к ФНО-альфа отменяют действие второго сигнала.

Цитотоксические T-клетки становятся активными сразу после распознавания антигена, реализуя потенциальную готовность молекулярного аппарата к уничтожению клеток-мишеней через процесс апоптоза или некроза. Напротив, CD4 Т-клетки воспаления после распознавания антигена на поверхности макрофагов тратят часы на синтез de novo медиаторов, активирующих макрофаги. Вновь синтезированные цитокины, собранные в микровезикулы, проникают в макрофаги в месте контакта с Т-клетками. Такой прямой путь, как и в случае с цитотоксическими Т-лимфоцитами, наиболее экономичен и функционально оправдан, поскольку не затрагивает соседние, неинфицированные клетки.

В макрофагах, активированных посредством контакта с Т-клетками воспаления и в результате секреции ИФ-гамма, инициируется ряд биохимических изменений, которые обеспечивают данным клеткам сильные антибактериальные свойства (рис.16). В условиях взаимодействия макрофагов с Т-клетками воспаления наблюдается более эффективное слияние фагосом, захвативших бактерии, с лизосомами - хранителями протеолитических ферментов, разрушающих внутриклеточные патогены. Процесс фагоцитоза сопровождается так называемым кислородным взрывом - образованием кислородных радикалов и окиси азота, обладающих бактерицидной активностью.

В условиях костимуляции ФНО-альфа и ИФ-гамма этот процесс идет гораздо активнее. Кроме того, активированные макрофаги усиливают экспрессию молекул II класса МНС и рецептора ФНО-альфа, что приводит к вовлечению дополнительных наивных Т-клеток. Весь этот комплекс событий обеспечивает достаточно прочный заслон от внутриклеточных патогенов.

Взаимодействующие с макрофагами Т-клетки воспаления не только способствуют усилению внутримакрофагальных биохимических процессов, но при этом сами активируются и выступают в роли организаторов многостороннего иммунного ответа на антиген.

Рис. 16.

Функциональная активность CD4 Т-клеток воспаления.

Основным объектом действия CD4 Т-клеток воспаления являются инфицированные макрофаги. В результате распознавания иммуногенного комплекса на макрофагах CD4 Т-клетки воспаления экспрессируют на своей поверхности фактор некроза опухолей-альфа (ФНО-альфа) и усиливают продукцию интерферона-гамма (ИФ-гамма). Совместное действие цитокинов обеспечивает более эффективное образование фаголизосом, накопление кислородных радикалов и окиси азота, обладающих бактерицидными свойствами, усиление экспрессии молекул II класса МНС, повышение продукции фактора некроза опухолей-альфа. Подобная активизация биохимических процессов в макрофагах не только способствует внутриклеточному уничтожению бактерий, но и определяет дополнительное включение Т-клеток в иммунный ответ.

Инфекционный процесс, провоцируемый воспроизводящимися патогенами, отражает борьбу двух сил - собственно возбудителя и иммунной системы хозяина. Например, возбудитель чумы Yersenia pestis обладает способностью к индуцируемому синтезу высокополимеризованного белка I , который начинает экспрессироваться на клеточной стенке при кислом значении рН. Известно, что в месте контакта возбудителя с макрофагом происходит локальное закисление. Это провоцирует синтез и экспрессию белка I. Данный белок, обладая сильными адгезивными свойствами, способствует более эффективному проникновению возбудителя внутрь клетки. Кроме того, это он помогает возбудителю избегать действия лизосомальных ферментов. Кислые условия фаголизосом поддерживают синтез этого защитного для возбудителя белка.

Макрофаги, хронически инфицированные внутриклеточными бактериями, могут терять способность активироваться Т-клетками. Массовое включение в процесс новых макрофагов происходит при высвобождении патогенов под влиянием синергического действия на инфицированные клетки ФНО-бета (лимфотоксина) и ИФ-гамма - продуктов активированных CD4 Т-клеток воспаления (рис.17).

Рис. 17

CD4 Т-клетки воспаления, как организаторы комплексного иммунного ответа.

CD4 Т-клетки воспаления при взаимодействии с макрофагами не только активируют макрофаги, но и сами активируются. Продуцируя целый набор цитокинов, они тем самым являются организаторами комплексного иммунного процесса. Клетками-мишенями регуляторного действия цитокинов являются макрофаги (1, 2, 5, 6), Т-клетки (3), прекурсоры моноцитарно- макрофагальной линии дифференцировки (4). Сокращения: ИФ-гамма - интерферон-гамма, ЛТ (ФНО-бета) - лимфотоксин (фактор некроза опухолей-бета), ИЛ-2 - интерлейкин-2, ИЛ-3 - интерлейкин-3, ГМ-КСФ - гранулоцитарно-макрофагальный колониестимулирующий фактор, МХФ - макрофагальный хемотаксический фактор (фактор хемотаксиса макрофагов), МИФ - макрофагальный ингибирующий фактор (фактор ингибиции макрофагов).

Это сочетание цитокинов также эффективно для гибели фибробластов - основных компонентов соединительной ткани, что обеспечивает проникновение иммунокомпетентных клеток к месту локализации инфекции. Ясно, что в условиях мобилизации иммунного ответа пул эффекторных Т-клеток должен поддерживаться на высоком уровне. Активированные макрофагами Т-клетки воспаления вовлекают дополнительные эффекторы посредством ИЛ-2 , способствующего пролиферации и дифференцировке антигенспецифических Т-клеток.

Помимо Т-эффекторов рекрутируются и сами макрофаги. Это реализуется двумя способами:

Во-первых, посредством индукции дифференцировки макрофагов в костном мозге под влиянием ИЛ-3 и гранулоцитарно-макрофагального колониестимулирующего фактора (ГМ-КСФ) ;

Во-вторых, вновь образованные макрофаги под влиянием лимфотоксина и макрофагального хемотаксического фактора начинают миграцию из кровяного русла в очаг локализации инфекции, где они и оседают, испытывая на себе действие макрофагингибирующего фактора, снижающего их подвижность.

Набор цитокинов, продуцируемых активированными CD4 Т-клетками воспаления после специфического распознавания патогена, обеспечивает многопрофильное развитие клеточного иммунного ответа. Таким образом, клетки рассмотренной субпопуляции выступают в качестве организаторов адекватного иммунного ответа.

Дендритные клетки – часть иммунной системы организма. Их сооткрывателем и открывателем ряда их ключевых функций был Ральф Штейнман , за что в 2011 году он получил Нобелевскую премию. По воле случая получилось так, что доктор Штейнман был единственным, кому Нобелевская премия досталась посмертно (сама по себе премия присуждается живым людям). Казус заключался в том, что смерть господина Штейнмана и объявление о присуждении ему премии произошли в один день (в пятницу), но о смерти было объявлено только в понедельник. Комитет Нобелевской премии решил, что технически на момент объявления победителя доктор Штейнман был жив, и ситуацию не стали «переигрывать».

Дендритные клетки (Dendritic cells, DCs) получили свое название за внешнюю схожесть с дендритами нейронов. Они являются частью врожденного иммунитета и играют важную роль в активации адаптивного иммунитета.

Цель заметки – раскрыть базовые принципы активации Т-клеток дендритными клетками и познакомить читателя с необходимой терминологией.

  • Врожденная и адаптивная иммунная система;
  • Общие принципы функционирования врожденной иммунной системы;
  • Pathogen-associated molecular patterns (PAMPs) и pattern recognition receptors (PRRs);
    • Небольшой фокус на дендритных клетках и интерфероне I типа.
  • Коротко о разных видах клеток адаптивной иммунной системы;
  • Дендритные клетки и их функции:
    • Antigen presenting cells и активация Т-клеток;
    • MHC-белки и пептидные «сигнатуры» микробов;
    • Разница MHC I и MHC II;
    • Активация дендритных клеток молекулярными паттернами микробов;
    • CCR7 (рецептор хемокина 7) и миграция в дендритных клеток в лимфоузлы;
    • Циркуляция наивных Т-клеток и попадание их в лимфоузлы;
    • Презентация антигена дендритными клетками и принцип «двойного рукопожатия»;
    • Активация, экспансия и деактивация Т-клеток.

Рассказ не хочется ограничивать исключительно нюансами функций DCs. Хочется, чтобы эта информация накладывалась на какую-то базу о работе иммунной системы. При этом попытки охватить все и сразу не будет. Комплиментарная система, подробности создания и работы антигенов, активация B-клеток и многого-много другого в заметке не будет.

Врожденная иммунная система

Innate immune system (врожденный иммунитет) – мгновенно реагирует на заранее определенное и небольшое количество патогенных паттернов;

Adaptive immune system (адаптивный иммунитет) с задержкой реагирует, но на любое антитело. В последствии запоминая антитело, и в последующие разы реактивно на него реагируя.

Основной клеточный состав врожденной иммунной системы:

  • Циркулирующие в крови клетки:
    • Нейтрофилы, фагоцитируют бактерии, но быстро погибают (в течение часа), секретируют цитокины итд;
    • Моноциты, преобразовываются в макрофаги при попадании в ткани;
  • Дозорные клетки (sentinel cells):
    • Маркофаги, фагоцитоз микробов и мертвых клеток (в основном нейтрофилов), секретируют цитокины, несколько месяцев жизни итд;
    • Тучные клетки (mast cells), секретируют цитокины, гистамины итд;
    • Дендритные клетки, запускают антивирусный ответ, активируют Т клетки итд.

Дозорные клетки находятся в тканях и реагируют на микробы после пересечения последними эпителиальных барьеров кожи и кишечника.

Циркулирующие клетки иммунной системы находятся в крови. И при воспалении попадают в нужные ткани.

Примерный порядок активации врожденного иммунитета:

  • Микробы пересекают эпителиальные барьеры;
  • Рецепторы дозорных клеток опознают «непрошенных гостей»;
  • Дозорные клетки секретируют провоспалительные цитокины;
  • Цитокины связывают на рецепторах эндотелия;
  • Что активирует молекулы адгезии внутри сосудов;
  • Различные молекулы адгезии с разной аффинитивностью связываются с соответствующими лигандами на поверхности циркулирующих иммунных клеток:
    • Например, e-selectin связывается с низкой аффинитивностью с лингадом e-selectin на нейтрофилах, что затормаживает их движение;
    • I-CAM связывается с высокой аффинтивностью с LFA-1 белком иммунной клетки, что останавливает иммунную клетку;
  • После полной остановки иммунные клетки просачиваются с воспаленную ткань и начинают все доступными им способами уничтожать микробы;
  • Первыми приходят нейтрофилы, фагоцитируют бактерии и через пару часов погибают сами; За ними приходят моноциты, превращаются в макрофаги и «подъедают» остатки трупов как микробов, так и нейтрофилов.

Остается вопрос: как дозорные клетки врожденного иммунитета опознают микробы?

PAMPs (Pathogen-associated molecular patterns) – паттерны молекулярных патогенов;

PPRs (Pattern recognition receptors) – рецепторы, опознающие паттеры.PAMPs:

  • Вирусные (находятся внутри клетки):
    • Односпиральные РНК;
    • Двуспиральные РНК
  • Бактериальные (в большей степени на поверхности клетки):
    • Паттерны Грам-отрицательные паттерны:
      • Липополисахариды (LPS) клеточной стенки;
      • Флагеллины («жгутики» для перемещения);
    • Паттерны Грам-положительных бактерий:
      • Флагеллины;
      • Тейхоивые кислоты;
      • Пептидогликаны

Бактерии уничтожаются при помощи фагоцитоза и разрушения их клеточной стенки.

Цепочка будет такой: бактерия связывается с PPRs на поверхности клетки (так называемые TLRs toll like receptors) → димеризация рецепторов и запуск цепочки внутриклеточных сигналов ˧ деактивация ингибитора Nf-Kb → выраженность транскрипторного фактора Nf-Kb → клеточные изменения, в частности секреция цитокинов TNFα и IL-1.

Плазмоцитоидные дендритные клетки и антивирусный ответ

С вирусами ситуация чуть интересней, и тут к нам возвращаются дендритные клетки.

Дендритные клетки реагируют на вирусные PAMPs секретированием интерферонов 1 типа. INF type 1 приводят клетки (например, эпителия) в противо-вирусное состояние. Которое заключается в большей подверженности апоптозу зараженными клетками, выраженности белков/ферментов, которые мешают вирусу размножаться и которые могут наносить урон ДНК/РНК вируса.

Сами клетки в противовирусном состоянии также способны секретировать INF type 1.

Дендритные клетки

Необходимые вводные закончились, пора приступить к antigen presenting cells. К антиген презентующим клеткам относятся дендритные клетки, макрофаги и B-клетки.

В дальнейшем речь будет идти о том, как DCs активируют Т-клетки адаптивной иммунной системы.

Т-клетки, MHC I и MHCII

Т клетки своими рецепторами могут воспринимать только пептиды, представленные им на MHC белках антиген презентующих клеток.

MHC II

  • Отвечает за бактерии;
  • Дендритные клетки интернализируют бактерии, уничтожают их в лизосомах, в итоге мы получаем пептидную «сигнатуру» бактерии;
  • MHC с пептидом отправляется к мембране;
  • MHC II связываются с рецепторами CD4+ клеток (T helpers, которые активируют B-клетки и клетки врожденной иммунной системы;
  • MHC II есть у антиген презентующих клеток.

MHC I

  • Отвечает за вирусы (тему опухолей пропустим);
  • Вирусный белок проходит юбиквинацию и становится доступных протеазам;
  • Протеаза «расщепляет» вирусный белок до пептидов;
  • Вирусный пептид с помощью транспортера TAP попадает в эндоплазматический ретикулум, откуда с MHC I комплексом попадает на мембрану;
  • MHC I активирует CD8+ клетки (цитотоксичные T клетки, которые уничтожают зараженные вирусы;
  • MHC I есть у большинства клеток, что объясняется особенностью вирусов.

Дендритные клетки. Активация и миграция в лимфоузлы

Для активации дендритных клеток должно произойти 2 события:

  • MHC белок с пептидом микроба на поверхности клетки (значит он был так или иначе интернализирован и расщеплен до пептидов);
  • PAMP рецепторы дендритных клеток должны быть активированными микробами;

При выполнении двух этих условий дендритные клетки выражают CD80/CD86 (подробнее чуть позже) и CCR7 (хемокин рецептор 7), выраженность которого приводит к тому, что DCs мигрируют в лимфососуды и по ним попадают во вторичные лимфо-органы. В частности, в лифмоузлы, где в межмембранном пространстве встречаются с Т-клетками.

Дендритные клетки активируют Т клетки

Т-лимфоциты путешествуют по крови по попадают с мемфоликулярное пространоство лимфоузлов при помощи кровотока и так называемых High endothelial venules (HEV).

Дело в том, что Т-клеток, аффинитивных определенному антигену, очень немного. Поэтому они путешествуют по организму, заходя ненадолго в лимфоузлы, куда активированные дендритные клетки попадают из тканей.

Для активации Т-клеток должно пройти 2 сигнала:

Сигнал 1. Антиген должен связаться с рецептором Т-клетки (нужна Т клетка с необходимой аффинитивностью рецептора;

Сигнал 2. Костимулирующие молекулы должны соединиться. Это B7-1 (CD80) и B7-2 (СD86) на стороне DCs и CD-28 на стороне Т-клеток.

Сигнал 1 без сигнала 2 приведет к апоптозу или анергии (угасание активной иммунной функции) Т-клетки.

После активация Т клетки проходят clonal expansion, активно делятся, их становятся десятки тысяч в случае с CD4+ и даже сотни тысяч в случае CD8+. Плюс Т-клетки после активации приобретают некоторые полезные фукнции.

Я опущу вопрос активации B-клеток Т-клетками, вопрос более глубокой функции T helpers и T killers. Остановлюсь только на активации Т клеток. В ткани они попадают примерно также, как циркулирующие в кроки клетки врожденной иммунной системы (см выше).

Деактивация Т-клеток

Любое воспаление (особенно цитотоксичное) чревато последствиями для организма. И этот процесс на уметь «тормозить».

В лимфоузлах это за это отвечает белок CTLA4 на Т-клетках, который связывается вместо CD28 с B7-1/B7-2. Это приводит к тому, что во время активации у нас будет только сигнал 1 и Т клетка будет неактивной.

Ткани (и опухоли) выражают PD-1 лиганд (PD-1, programmed death), который связывается с PD-1 белком Т-клеток, что приводит к их exhaustion (истощению), то есть деактивации.

Моноклональные антитела, подавляющие функции CTLA-4 и PD-1, одно из последних слов в борьбе с раковыми заболеваниями.

Выводы:

  • Дендритные клетки активируются двумя сигналами:
    • MHC белком на мембране, на котором будет пептидный антиген;
    • PAMPs микробов связывается с рецепторами DCs;
  • Активированные дендритные клетки выражают CCR7, что позволяет им мигрировать через лимфо-сосуды в лимфоузлы и «искать» в междфоликулярном пространстве нужную Т-клетку;
  • Активация Т-клеток включает в себя 2 сигнала:
    • Сигнал 1 MHC с пептидом (антигеном) связываются с нужным TCR (T cell receptor);
    • Сигнал 2, костимуляция CD86/CD80 DCs с CD28 Т-клеток;
  • При наличии только сигнала 1 Т-клетки подвергаются апоптозу или анергии;
  • После активации начинается экспансия и дифференциация Т-клеток, которая является одним из компонентов ответа иммунной системы.

Источники:

  1. Торможение лейкоцитов молекулами адгезии [видео];

P.S. Это было писать скучно, в виду пересказа без моего вклада, но необходимо для ряда последующих заметок.

Словарь по итогам заметки:

  • Врожденная иммунная система:
    • Дозорные клетки (тучные, макрофаги, дендритные – это только основные, есть и другие);
    • Циркулирующие клетки (моноциты, нейтрофилы);
    • Также врожденная иммунная система включает в себя барьеры (эпителий, муцин), белки и молекулы (комплименты, агглутинины);
  • Адаптивная иммунная система: B-клетки, T-помощники, цитотоксичные Т-клетки;
  • Дендритные клетки:
    • MHC I,
    • MHC II
    • B7-1 (CD80)
    • B7-2 (CD86)
  • Т-клетки:
    • CD28
    • CTLA4
  • Клональная селекция;
  • Клональная экспансия
  • Антиген-презентующие клетки (DCs, макрофаги, B-клетки);
  • Анергия


Под активацией клеток понимают их переход из состояния покоя в функционально активное состояние - макрофаги продуцируют активные формы кислорода, тучные клетки выбрасывают гранулы, мышечные клетки сокращаются и т.д. В случае лимфоцита активация также означает выход из состояния покоя (G0), но в несколько ином смысле: покоящийся лимфоцит находится вне клеточного цикла, а его активация означает вступление в цикл. Это последствие активации лимфоцитов глубоко функционально, поскольку любому проявлению функции лимфоцитов должно предшествовать их размножение (поскольку исходная численности клеток в каждом клоне мала). Это не относится к естественным киллерам - лимфоцитам, популяция которых не имеет клональной структуры. Активация NK-клеток не связана с пролиферацией и означает переход в состояние готовности выполнять цитотоксическую функцию.
Молекулярные основы активации Т-клеток
Активация клеток, в том числе лимфоцитов, всегда сопряжена с экспрессией многих генов. В случае лимфоцитов активация должна приводить прежде всего к экспрессии генов, обеспечивающих пролиферативную экспансию клона. Суть подготовки Т-клеток к пролиферации состоит прежде всего в экспрессии генов аутокринного ростового фактора - IL-2 и его рецептора, а точнее a-цепи этого рецептора, обеспечивающей достижение необходимого уровня сродства к цитокину, что служит условием выполнения рецептором его функций. Оба эти гена являются индуцибельными, т.е. в покоящемся состоянии они выключены, но экспрессируются в ответ на индуцирующее воздействие. Сигнал к включению гена поступает из его регуляторного (промоторного) участка, в котором расположены сайты специфического взаимодействия с определенными белками - транскрипционными факторами. Некоторые их таких белков исходно представлены в клетке в активной форме, но большинство отсутствует и может быть синтезировано de novo или активировано путем фосфорилирования или удаления ингибирующей субъединицы. Таким образом, молекулярная основа активации - образование необходимых транскрипционных факторов, обеспечивающих включение индуцибельных генов.
На Т-лимфоциты активирующее воздействие оказывают индукторы активации. В физиологических условиях таким индуктором служит антигенный стимул. Само по себе распознавание антигена при контакте Т-хел- пера с АПК не может повлиять на активность гена в силу пространственной разобщенности мембранного рецептора и генов, локализующихся в ядре. TCR проникает внутрь клетки после связывания с антигеном, но не для того, чтобы мигрировать в ядро и повлиять на активность гена, а для того, чтобы быть расщепленным. Однако при связывании антигенного комплекса с TCR в сочетании с костимулирующим воздействием возникает сигнал, достигающий ядра и регулирующий экспрессию генов. Передача сигнала осуществляется по каскадному принципу. На разных этапах передачи сигнала ее осуществляют молекулы ферментов (главным образом, протеинкиназы, активирующие белки на каждой очередной стадии передачи сигнала), а также адапторные и ГТФ-связывающие белки. Сигнал исходно является двойственным, поскольку его передача осуществляется одновременно от TCR и CD28. Затем эти пути пересекаются и вновь разделяются на несколько ветвей. Конечный результат передачи сигнала по каждому сигнальному пути - формирование транскрипционного фактора. На рис. 3.90 представлена типовая схема внутриклеточной передачи сигнала, завершающейся формированием транскрипционных факторов и активацией генов. Для активации Т-клеток требуется формирование трех транскрипционных факторов - NF-AT, NF-kB и AP-1. Далее рассмотрим осуществление внутриклеточной передачи сигнала на примере активации Т-хелперов при распознавании презентируемого дендритными клетками антигена.
Связывание комплекса MHC-II-пептид вызывает конформационные изменения молекулы TCR и связанной с ней молекулы корец ептора CD4. Пока окончательно не известно, происходит ли при этом только изменение конформации рецепторов или они олигомеризуются. Такие изменения активируют тирозинкиназы, ассоциированные с рецептором и корецеп- тором - Lck (p56lck), связанную с CD4, и Fyn (p59fyn), связанную с CD3. Указанные тирозинкиназы называют рецепторными, или проксимальными, в связи с тем, что они непосредственно примыкают к рецептору, входя в рецепторный комплекс. Обе упомянутые киназы относят к семейству Src-киназ. Киназы этого семейства содержат домены SH1, SH2 и SH3 (SH - от Src-homology) (рис. 3.91). Первый домен обладает ферментативной активностью, остальные взаимодействуют с другими киназами и адапторными белками. Функция тирозинкиназ состоит в фосфорилировании по остатку тирозина белков-мишеней, что необходимо для их активации и проявления функций, в том числе ферментативных. Мишени рецепторных киназ многочисленны. К ним относят сами молекулы Fyn и Lck (что обусловливает их аутофосфорилирование), а также полипептидные цепи TCR и другие киназы. Особенно многообразны мишени киназы Lck.
Однако первоначальным условием активации рецепторных киназ является, наоборот, их дефосфорилирование, обеспечивающее пере-

ход из гиперфосфорилированного в нормальное состояние. Дело в том, что в покоящейся клетке SH2-домен киназы Lck находится в свернутой форме вследствие фосфорилирования С-концевого остатка тирозина Y505 конститутивно активированной киназой Csk. Фосфорилированный Y505 взаимодействует с помощью фосфатной группы с остатком тирозина в Sffi-домене, к которому и подтягивается С-конец молекулы. В таком виде фермент не активен, поскольку при этом не может быть фосфори- лирован функционально важный остаток Y394 в домене SH1. Для снятия такой функциональной блокады необходимо дефосфорилирование с последующим развертыванием молекулы, что осуществляется с участием тирозинфосфатаз. Основную роль в переводе рецепторных киназ в «рабочее» состояние выполняет молекула CD45, цитоплазматический домен которой обладает активностью тирозинфосфатазы. Ранее уже упоминалось, что эта крупная молекула, препятствующая формированию тесного контакта между дендритной клеткой и Т-хелпером, вначале удаляется из зоны иммунного синапса, а затем часть молекул возвращается в эту зону для выполнения своей функции - дефосфорилирования молекул рецепторных тирозинкиназ. После того как остаток Y394 становится доступным для фосфорилирования, Lck может проявлять активность тирозинкиназы.
В генерации сигналов, передаваемых от полипептидных цепей комплекса TCR-CD3, наиболее важно наличие в цитоплазматическом участке у-, 5-, е- и Z-цепей активационной последовательности ITAM, о которой уже неоднократно упоминалось. Структура этого мотива такова: YXXI/L/ VX(6-8)YXXI/L/V (где Y - тирозин, Х - любой остаток, I/L/V - изолейцин, лейцин или валин) (рис. 3.92). Фосфорилирование остатков тирозина

Рис. 3.92. Сопоставление характеристик активационных и ингибирующих мотивов (ITAM и ITIM)


в ITAM делает этот участок доступным для распознавания аналогичными участками сигнальных молекул, расположенных более дистально. Среди полипептидных цепей TCR наиболее важна для передачи сигнала Z-цепь. В отличие от у-, 5- и е-цепей TCR, имеющих по одному участку ITAM, в цитоплазматической части Z-цепи расположены 3 последовательности ITAM, предназначенные для взаимодействия с остатками тирозина тирозинкиназы ZAP-70 (от Z-associated protein - ^-ассоциированный белок; масса 70 кДа) - ключевого фактора в передаче сигнала от TCR при его связывании с лигандом. Фосфорилирование Z-цепи является наиболее ответственным и в то же время наиболее уязвимым этапом активации Т-клеток. Полагают, что именно для обеспечения фосфорилирования всех мотивов ITAM этой молекулы необходимо длительное поддержание контакта Т-лимфоцитов и дендритных клеток. В Z-цепи покоящейся Т-клетки фосфорилирован 1 остаток тирозина; отсутствие фосфорилирования приводит к развитию апоптоза (рис. 3.93). После взаимодействия Z-цепи и ZAP-киназы запус-


Рис. 3.94. Схема сигнальных путей при активации Т-клеток. Распознавание комплекса молекулы МНС с антигенным эпитопом в сочетании с костимуляцией индуцирует запуск сигналов, передаваемых в ядро с помощью 5 каскадов, обеспечивающих формирование 3 транскрипционных факторов, необходимых для активации клетки. Жирным контуром обведены факторы, для которых показана высокая степень зависимости от костимуляции

кается полномасштабный процесс в виде нескольких параллельных путей передачи активационного сигнала (рис. 3.94).
Молекулу ZAP-70 относят к тирозинкиназам семейства Syk. Она содержит тандем из двух SH2-доменов. Условие ее взаимодействия с фцепью - предварительное фосфорилирование остатков тирозина в ITAM фцепи. После фосфорилирования 2-й остаток тирозина в мотивах ITAM фцепи взаимодействует с тирозином S^-доменов киназы ZAP-70. В результате фосфатная группа тирозина фцепи становится общей с тирозином Sffi-домена молекулы ZAP-70. За этим следует фосфорилирование остатков тирозина в ферментативном домене молекулы ZAP-70, осуществляемое тирозинкиназами Lck и, возможно, Fyn, что приводит к включению ферментативной (киназной) активности молекулы.
Дальнейшая передача сигнала обусловлена взаимодействием ZAP-70 с ее главным субстратом - адапторным белком LAT (от Linker for activation of T-cells - линкер активации Т-клеток). Этот белок связан с мембраной и входит в состав рафтов. После катализируемого ZAP-70 фосфорилирования LAT приобретает способность связывать сигнальные молекулы, участвующие в дальнейшей передаче сигнала: адапторные белки SLP-76, Grb2, фактор Vav, а также ферменты - PLCy1 и PI3K. Активация некоторых из упомянутых белков зависит от LAT не напрямую, а косвенно. Так, через SH3-домены


адапторных белков семейства Grb2 к сигнальному пути подсоединяются факторы SLP-76 и Sos. SLP-76, в свою очередь, опосредует подключение к сигнальному пути PLСy1 и ГТФазы Ras. Активация PLCy1 происходит с участием тирозинкиназы Itk, относящейся к семейству Btk - третьему (после Src и Syk) семейству тирозинкиназ, участвующих во внутриклеточной передаче сигнала при активации лимфоцитов. Все сигнальные факторы, вовлекаемые в процесс активации с прямым и косвенным участием LAT, рекрутируются в состав клеточной мембраны и взаимодействуют с ее фосфоинозитидными компонентами. Комплекс, образуемый при взаимодействии SLP-76, Vav и Nck, реагирует с белками цитоскелета PAK и WASP, служащими медиаторами перестроек в цитоскелете активируемых клеток.
Активированная PLCy1 катализирует расщепление фосфатидилино- зитол 4,5-бифосфата с образованием диацилглицерола (DAG), который остается связанным с мембраной, и инозитол-1,4,5-трифосфата (рис. 3.95). Инозитол трифосфат поступает в цитоплазму и взаимодействует с рецепторами на поверхности эндоплазматического ретикулума, что обусловливает выход ионов Са2+ из внутриклеточных хранилищ. Опустошение последних вызывает открытие Са2+-зависимых каналов в клеточной мембране, через которые в клетку поступают ионы Са2+ из внеклеточного пространства. В результате возрастает концентрация свободных ионов Са2+ в цитоплазме клетки. Ионы Са2+ активируют фосфатазу кальциневрин, дефосфорилиру- ющую цитоплазматический компонент транскрипционного фактора NF-AT (Nuclear factor of activated T-cells - ядерный фактор активированных Т клеток) (рис. 3.96). Это обусловливает перемещение фактора в ядро, взаимодействие с ядерным компонентом и формирование зрелой формы молекулы NF-AT, способной взаимодействовать с ДНК в промоторных участках генов, вовлеченных в активацию Т-клеток (IL2, IL2R и др.).
Диацилглицерол традиционно рассматривали как фактор, активирующий протеинкиназу С (PKC) - уже не раз упоминавшуюся ранее серин/тре-


Рис. 3.96. Са2+-зависимое звено активации Т-клеток и его блокада циклоспорином А. Зависимый от инозитолтрифосфата сигнальный путь приводит к мобилизации в ядро транскрипицонного фактора NF-AT. Этот путь может быть блокирован циклоспорином А, способным в комплексе с циклофиллином инактивировать фосфатазу кальциневрин, ответственную за дефосфорилирование цитоплазматического фактора NF-AT (что служит условием его миграции в ядро)

ониновую киназу, признаваемую одним из ключевых факторов активации Т-клеток. Однако оказалось, что изоформы РКС, активируемые диацил- глицеролом, не имеют отношения к активации Т-клеток. В ней участвует изоформа 0 РКС, появляющаяся в иммунном синапсе на пике его «зрелости». Ее рекрутирование в иммунный синапс зависит от активности Р13К и Vav (последний фактор связан с цитоскелетом, роль которого в транспорте РКС0 очень важна). Поскольку активация Vav зависит от сигнализации не только через TCR, но и через CD28, а CD28-зависимый путь реализуется с участием PI3K (она ассоциирована с CD28 - см. далее), становится очевидным, что PI3K и Vav представляют различные этапы одного сигнального пути и, таким образом, вовлечение в активацию молекулы РКС0 зависит от костимуляции через CD28. При этом не вызывает сомнений роль в активации РКС0 сигналов, поступающих от TCR, поскольку РКС0 фосфорили- руется (и, следовательно, активируется) киназой Lck. Допускают участие в активации РКС0 и других факторов, в том числе диацилглицерола, но эти влияния второстепенны. Активация PKC0 необходима для предотвращения апоптоза активируемых клеток и включения двух из трех критических транскрипционных факторов, необходимых для экспрессии генов IL2 и IL2R - АР-1 и NF-kB. РКС0-зависимая активация АР-1 реализуется через Rac/JNK-ветвь MAP-каскада (о нем будет сказано далее). Путь, приводящий к активации транскрипционного фактора NF-kB, содержит в качестве

промежуточных звеньев последовательно активируемые (с участием PKC0) факторы CARMA-1, Bcl-10 и MALT-1, IKK. IKK фосфорилирует ингибирующую субъединицу NF-kB - IkK, придавая ей способность к связыванию убиквитина, что предопределяет ее последующую деградацию. При этом освобождается активная субъединица NF-kB, мигрирующая в ядро и выступающая в роли транскрипционного фактора - одного из трех, необходимых для экспрессии генов активации Т-клеток. Транскрипционный фактор NF-kB, играющий ключевую роль при активации клеток врожденного иммунитета, был рассмотрен выше (см. раздел 2.2.4).
Столь же широко при активации клеток используется еще один сигнальный путь, запускаемый при активации Т-лимфоцитов - MAP-каскад, или MAP-модуль (от Mitogen-activated kinases - киназы, активированные мито- геном). Его роль состоит главным образом в индукции транскрипционного фактора АР-1 (димера c-jun/c-fos). Существует 3 ветви этого каскада, приводящие к образованию трех типов MAP-киназ (MAP^ - ERK1/ERK2 (от Extracellular signal-regulated kinases - киназы, регулируемые внеклеточными сигналами), p38 и JNK (от c-Jun NH2-terminal kinases - c-Jun NH2-концевые киназы). Каскады, приводящие к активации MAP-киназ, включаются с участием адапторных белков и низкомолекулярных ГТФаз. Один из адап- торных белков - Grb2 (Growth factor receptor bound protein 2), активируется при взаимодействии с фактором LAT. Активированный Grb2 спонтанно связывается с другим LAT-активированным белком SLP-76 и фактором Sos (от Son of sevenless). Sos представляет фактор замещения гуаниннуклеотидов: он обусловливает замещение ГДФ на ГТФ в составе малых G-белков (т.е. белков, связывающих гуаниннуклеотиды). Поэтому комплекс SLP-76/Grb2/Sos обусловливает активацию G-белка Ras, превращая связанный с ним ГДФ в ГТФ. Ras-ГТФ активирует серин/треониновую киназу Raf (киназу киназы MAP-киназы - МККК). Далее следует каскад реакций: Raf активирует МЕК (киназу MAP-киназы - МКК), а МЕК активирует вышеупомянутые MAP-киназы ERK1 и ERO. Активацию JNK-ветви MAP-каскада инициирует упоминавшийся выше фактор Vav (зависимый от LAT и связанный с активацией цитоскелета, а также РКС0, см. выше). Он вызывает переход ГДФ в ГТФ в комплексе с G-белком Rac (семейство Rho). Rac-ГТФ активирует киназу МЕКК (выступающую в роли МККК), она активирует киназу JNKK (MKK), которая, в свою очередь, активирует MAP-киназу JNK. Третий путь MAP-модуля, приводящий к образованию MAP-киназы р38, также зависит от G-белков семейства Rho. Он аналогичен по общей схеме двум другим путям, но изучен менее детально.
Активация MAP-киназ ERK1/ERK2, JNK и p38 осуществляется путем фосфорилирования остатков треонина и тирозина в мотиве TXY, причем роль Х в трех типах киназ выполняют различные остатки (соответственно Glu, Pro и Gly). Названные MAP-киназы обусловливают формирование транскрипционных факторов, участвующих во многих клеточных процессах. ERK1/ERK2 обусловливает образование транскрипционных факторов АР-1 и Elk-1, JNK - факторов ATF2, Elk-1 и c-Jun (компонент АР-1), p38 - факторов ATF2, Elk-1 и MEF-2C.
Запуск рассмотренных выше сигнальных путей при активации Т-клеток происходит при параллельном связывании TCR и костимуляции через молекулу CD28. Дифференцирование сигнальных путей, включаемых через эти мембранные молекулы, а также расшифровка взаимодействия этих путей до конца не завершены. Однако общая картина проявляется достаточно четко, чтобы в общих чертах понять молекулярные основы костимуляции. При связывании TCR, координированном со связыванием корецептора, происходит изменение конформации комплекса TCR-CD3, CD4 вызывает активацию рецепторных тирозинкиназ Fyn и Lck, а также фосфатазы CD45. Конечный результат «проксимальных» событий - фосфорилирование Z-цепи рецепторного комплекса и передача активационного сигнала на киназу ZAP-70. Далее с участием адапторных белков LAT, SLP-76 и Vav область, вовлеченная в передачу сигнала, существенно расширяется, включая мембранно-связанные киназы, цитоскелет и малые G-белки. Сигнальный путь, приводящий (через активацию PLCyl, образование инозитолтрифосфата и активацию кальциневрина) к мобилизации Са2+ и активации транскрипционного фактора NF-AT, по-видимому, реализуется без прямого участия сигналов, генерируемых при костимуляции. Другие пути в большей или меньшей степени зависят от костимулирующего сигнала.
Наиболее прямое следствие костимуляции через CD28 - активация мембранного фермента PI3K, физически связанного с молекулой CD28. Этот фермент катализирует образование фосфатидилинозитол 4, 5-бифосфата, служащего источником инозитолтрифосфата. Однако это событие напрямую не связано с активацией и может рассматриваться как подготовительное. При активации клетки фосфатидилинозитолтрифосфат активирует Vav - узловой фактор, ответственный за вовлечение в процесс активации цитоскелета и участвующий в рекрутировании и активации протеинкиназы PKC0. Этот фермент важен для функционирования сигнального пути, приводящего к формированию транскрипционных факторов NF-kB и АР-1. В обоих случаях роль PKC0 в наибольшей степени проявляется во включении Rас/JNK-ветви MAP-каскада. Raf/ERK- и Rac/p38-ветви MAP-каскада в меньшей степени зависят от PKC0, а следовательно, от костимуляции. Таким образом, молекулярная основа костимуляции - вовлечение в процесс активации Т-хелпера сигнальных путей, реализуемых с участием трех ключевых факторов - PI3K, фактора Vav и изоформы 0 протеинкиназы С. Из трех ключевых транскрипционных факторов, запускающих гены активации Т-клеток, экспрессия двух (АР-1 и NF-kB) зависит от костимуляции и только для выработки NF-AT непосредственно костимуляция не требуется.
Таким образом, в результате в Т-клетке формируется 3 транскрипционных фактора - NF-AT, NF-kB AP-1. Формирование этих факторов происходит различными путями. Активный NF-AT образуется в результате сборки димера, включающего цитоплазматический и ядерный субкомпоненты NF-AT - NF-ATc и NF-ATn. Если NF-ATn - конститутивный фактор, всегда присутствующий в ядре Т-клетки, NF-ATc должен быть активирован для миграции в ядро, что достигается его дефосфорилированием, катализируемым кальциневрином (см. выше). Транскрипционный фактор NF-kB активируется путем отщепления от комплекса IkB-NF-kB ингибирующей субъединицы IkB. Как уже говорилось выше, это происходит при фосфорилировании IkB киназой IKK, активируемой с участием РКС0. Фосфорилированная субъединица становится доступной для деградации



по убиквитиновому пути. Фактор АР-1 - димер белковых продуктов двух индуцибельных протоонкогенов - c-fos и c-jun. Для экспрессии этих генов и синтеза белков необходимы соответствующие транскрипционные факторы, а именно Elk-1 (для c-fos) и JNK (для c-jun). Как уже было указано выше, Elk-1 и JNK - конечные продукты деятельности различных ветвей MAP-каскада. Синтезируемые de novo белки c-fos и c-jun образуют гомо- и гетеродимеры, формирующие транскрипционный фактор АР-1.
Рассмотренные три фактора (NF-AT, NF-kB и AP-1) нужны для индукции генов активации Т-клеток - в первую очередь IL2 и IL2R. Промоторный участок гена IL2 содержит 9 сайтов связывания транскрипционных факторов (рис. 3.97). Среди них есть 2 участка связывания октомера Oct, не лимитирующего процесс индукции гена. Из трех ключевых транскрипционных факторов NF-kB взаимодействует с промотором в одном сайте, не зависимом от других транскрипционных факторов. Два других фактора - NF-AT и AP-1 - взаимодействуют с промотором как отдельно друг от друга (по 1 сайту связывания), так и в комплексе (3 сайта связывания). Заполнение всех сайтов соответствующими транскрипционными факторами, приводящее к индукции гена, служит конечным результатом передачи сигнала при активации Т-клеток.
Выше были подробно рассмотрены сигнальные пути, участвующие в активации Т-хелперов. Активация цитотоксических Т-клеток осуществляется по сходным механизмам.
3.5.2.2. Проявления активации Т-клеток
Активация CD4+ Т-клеток (как и любых Т-лимфоцитов) приводит к экспрессии большого числа генов, среди которых наибольшую роль в реализации основных эффекторных событий играют гены IL2 и IL2R, кодирующие соответственно цитокин IL-2 и a-цепь его рецептора. Экспрессия гена IL2 происходит примерно через 1 ч после получения стимулирующего сигнала. Секрецию белка IL-2 стимулированными Т-клетками in vitro выявляют через 3-4 ч; она достигает пика через 8-12 ч и прекращается через 24 ч. In vivo секреция IL-2 начинается через 1-3 сут после введения антигена


Рис. 3.98. Временная динамика экспрессии молекул активации Т-клеток. На графи
ке представлены сроки экспрессии ключевых молекул активации после стимуляции Т-клеток

(иммунизации) и сохраняется в течение 7-12 сут. Экспрессия a-цепи рецептора IL-2 происходит несколько позже и продолжается дольше - in vitro ее выявляют через 4 ч после стимуляции; максимума она достигает через 2-3 сут и прекращается через 5 сут (рис. 3.98).
Одновременно с геном IL2 в кратчайшие сроки после действия стимулятора (в физиологических условиях - антигенного комплекса пептид-MHC) экспрессируются гены с-Myc и N-Myc, называемые ранними активационными генами. Они участвуют в подготовке клеток к митозу. Через 2-3 ч на поверхности Т-клетки появляется CD69 - самый ранний активационный антиген, частично мобилизуемый из внутриклеточных депо, а частично экспрессируемый de novo. Его экспрессия продолжается немногим более суток. Вскоре после CD69 на поверхности клетки появляется другой ранний маркер активации - CD25, представляющий уже упомянутую a-цепь рецептора для IL-2. Несколько раньше выявляют экспрессию ряда цитоки- новых генов и синтез ограниченных количеств соответствующих цитокинов (IFNy, IL-4, IL-5, IL-6).
Следующие проявления активации наблюдают через сутки после действия стимулятора, когда экспрессируется молекула рецептора для транс- феррина (CD71). Этот фактор играет важную роль в пролиферации, поскольку для ее осуществления необходимы ионы железа. В последующие дни (3-6 сут) экспрессируются молекулы MHC-II, относимые к поздним маркерам активации Т-клеток, а затем - р1-интегрины, обозначаемые как очень поздние активационные антигены - VLA (Very late activation antigens), и секретируются хемокины. Эти поздние проявления активации клеток совмещаются с пролиферативным процессом.

), уровня циркулирующих иммунных комплексов, основных классов иммуноглобулинов периферической крови, упор делается на расширенный анализ NK-клеток (Natural killers – "натуральные киллеры"), а также оценку активированных Т-лимфоцитов (CD3 + HLA-DR + CD45 +) и активированных цитотоксических лимфоцитов (CD8 + HLA-DR + CD45 +), отвечающих за противовирусный иммунитет. Анализ вышеперечисленных популяций клеток поможет понять, адекватно ли иммунная система реагирует на вирусную инфекцию и нуждается ли пациент в иммуностимулирующей терапии.

* Результаты исследования выдаются с заключением врача – аллерголога-иммунолога, доктора медицинских наук.

T-клеточные лейкозы

К каждой иммунограмме прилагается письменное заключение врача-иммунолога.



Важные замечания

Для диагностики патологий результаты этого исследования необходимо сопоставлять с клиническими данными и показателями других лабораторных анализов. Также следует отметить, что клиническую значимость исследования существенно повышает оценка иммунологического статуса пациента в динамике.

Литература

  • Хаитов, Р. М. Аллергология и иммунология: национальное руководство / под ред. Р. М. Хаитова, Н. И. Ильиной. – М. : ГЭОТАР-Медиа, 2009. – 656 с.
  • Хаитов, Р. М. Руководство по клинической иммунологии. Диагностика заболеваний иммунной системы: руководство для врачей / Р. М. Хаитов, Б. В. Пинегин, А. А. Ярилин. – М. : ГЭОТАР-Медиа, 2009. – 352 с.
  • Зуева Е. Е. Иммунная система, иммунограмма: рекомендации по назначению и применению в лечебно диагностическом процессе / Е. Е Зуева, Е. Б. Русанова, А. В. Куртова, А. П. Рыжак, М. В. Горчакова, О. В. Галкина – СПб. – Тверь: ООО "Издательство "Триада", 2008. – 60 с.
  • Кетлинский, С. А. Иммунология для врача / С. А. Кетлинский, Н. М. Калинина. СПб. : Гиппократ, 1998. – 156 с. Ярилин, А. А. Иммунология: учебник / А. А. Ярилин. – М. : ГЭОТАР-Медиа, 2010. – 752 с.
  • Хаитов, Р. М. Иммунология: атлас / Р. М. Хаитов, А. А. Ярилин, Б. В. Пинегин.М. : ГЭОТАР-Медиа, 2011. – 624 с.
  • Хаитов, Р. М. Иммунология: учебник / Р.М. Хаитов. – М. : ГЭОТАР-Медиа, 2009. – 320 с.
  • Хаитов, Р. М. Оценка иммунного статуса человека в норме и при патологии / Р. М. Хаитов, Б. В. Пинегин // Иммунология. – 2001. – N4. – С. 4-6.
  • Whiteside, T. L. Role of Human Natural Killer Cells in Health and disease / T. L. Whiteside, R. B. Herberman // Clinical and Diagnostic Laboratory Immunology. – 1994. – Vol. 1, №2. – P. 125-133.
  • Ginadi, L. Differential expression of T-cell antigens in normal peripheral blood lymphocytes: a quantitative analysis by flow cytometry / L. Ginadi, N. Farahat, E. Matutes // J. Clin. Pathol. – 1996. – Vol. 49, № 1. – P. 539-544.
  • Merser, J.C. Natural killer T-cells: rapid responders controlling immunity and disease / J.C. Merser, M.J. Ragin, A. August // International J. Biochemistry & Cell Biology. – 2005. – № 37. – P. 1337-1343.
  • Никитин, В. Ю. Маркеры активации на Т-хелперах и цитотоксических лимфоцитах на различных стадиях хронического вирусного гепатита С / В. Ю. Никитин, И. А. Сухина, В. Н. Цыган [и др.] // Вестн. Рос. Воен.-мед. акад. – 2007. – Т. 17, № 1. – С. 65-71.
  • Boettler, T. T cells with CD4 + CD25 + regulatory phenotype suppress in vitro proliferation of virus-specific CD8 + T cells during chronic hepatitis C virus infection / T. Boettler, H.C. Spangenberg, C. Neumann-Haefelin // J. Virology. – 2005. – Vol. 79, N 12. – P. 7860-7867.
  • Ormandy, L.A. Increased Populations of Regulatory T Cells in Peripheral Blood of Patients with Hepatocellular Carcinoma / L.A. Ormandy, T. Hillemann, H. Wedemeyer // J. Cancer Res. – 2005. – Vol. 65, N 6. – P. 2457-2464.
  • Sakaguchi, S. Naturally arising FoxP3-expressing CD4 + CD25 + regulatory T cells in immunological tolerance to self- and non-self / S. Sakaguchi // Nature Immunol. – 2005. – Vol. 6, N 4. – P. 345-352.
  • Romagnani, S. Regulation of the T cell response / S. Romagnani // Clin. Exp. Allergy. – 2006. – Vol. 36. – P. 1357-1366.
  • Хайдуков С. В., Основные и малые популяции лимфоцитов периферической крови человека и их нормативные значения (метод многоцветного цитометрического анализа) / Хайдуков С. В., Зурочка А. В., Тотолян А. А., Черешнев В. А. // Мед. иммунология. – 2009. – Т. 11 (2-3). - С. 227-238.

Уникальным свойством антигена, проникшего в организм, яв­ляется его способность специфически связываться с лимфоцитами и активировать их.

Согласно клонально-селекционной теории, выдвинутой в 1959 г. Бернетом, при нормальном развитии в организме возникает набор из тысяч очень небольших по объему субпопуляций лимфоцитов, имеющих на наружной мембране рецепторы лишь к одной какой-то детерминанте. Иммунный ответ оказывается специфическим в силу того, что проникший в организм антиген избирательно свя­зывается только с теми клетками, на поверхности которых имеют­ся соответствующие рецепторы. С остальными клетками этот ан­тиген не взаимодействует.

Связывание антигена индуцирует активацию лимфоцита, то есть запускает ряд процессов, приводящих к клеточному деле­нию и дифференцировке. В процессе дифференцировки лим­фоцитов происходит развитие таких эффекторных функций,


как антителообразование у В-клеток и появление цитотокси-ческой активности у части Т-клеток.

Под активацией лимфоцитов понимается достаточно слож­ный процесс перехода клетки из фазы G0 в фазу G1, вызванный взаимодействием со стимулирующим агентом (например, антиге­ном или митогеном). Термин «покоящийся лимфоцит» относится к лимфоцитам, которые находятся в фазе G0 (в этой фазе клеточ­ного цикла клетки не делятся), характеризующейся низким уров­нем метаболической активности, т. е. низкой скоростью синтеза белков и РНК при отсутствии синтеза ДНК. Реагирующие с анти­геном клетки согласно клонально-селекционной теории Бернета обычно находятся в покоящемся состоянии до получения стиму­лирующего сигнала.

При взаимодействии с антигеном в ранее «покоившихся лим­фоцитах» наряду с метаболическими изменениями, характерными для делящихся клеток, происходят процессы созревания, различ­ные в разных субпопуляциях лимфоцитов. В итоге каждая субпо­пуляция приобретает набор присущих только ей поверхностных антигенов и специфических функций.

Последовательность процессов активации лимфоцитов в об­щем виде может быть представлена следующим образом. Рецепто­ры на поверхности лимфоцита связывают стимулирующий лиганд (например, антиген) и сшиваются друг с другом, образуя неболь­шие локальные кластеры сшитых рецепторов, которые становятся наиболее эффективными в передаче активирующего сигнала.

Локальные кластеры повышают проницаемость мембраны лим­фоцита для одновалентных катионов, поступающих внутрь клет­ки, что приводит к деполяризации мембраны и локальному увели­чению концентрации Na + -, K + -АТФазы. Вследствие сшивки ре­цепторов лимфоцита активируется мембранная метилтрансфе-раза, которая катализирует образование достаточного количества монометилфосфатидилэтаноламина, повышающего текучесть мем­браны и вызывающего ее локальную перестройку. В результате этого открываются каналы, через которые ионы Са 2+ проникают (диффундируют) в лимфоцит. Вследствие такого локального уве­личения концентрации Са 2+ с внутренней стороны мембраны ак­тивируется фосфолипаза А2, катализирующая образование лизо-лецитина и арахидоновой кислоты из фосфатидилхолина. Эти ре­акции происходят в течение первых 30 мин после контакта лим­фоцита с антигеном.



Одновременно ионы Са 2+ активируют и другой цитоплазматичес-кий фермент, расщепляющий фосфатидилинозитол (по крайней мере в Т-клетках). Высвобождающаяся арахидоновая кислота при участии липоксигеназы и циклоксигеназы расщепляется с образова­нием лейкотриенов и простагландинов (одни продукты каскада ара­хидоновой кислоты регулируют синтез РНК и ДНК, другие - влия­ют на поглощение ионов Са 2+ или активность аденилатциклазы).


Лизолецитин с помощью ионов Са 2+ активирует гуанилат-циклазу, а активность аденилатциклазы уменьшается вследствие ее соседства с Ш + -К + -АТФазой, конкурирующей с ней за АТФ. Все это приводит к временному увеличению концентрации цГМФ, активирующего протеинкиназы, трансферазы жирных кислот и ферменты, увеличивающие синтез мембранных фосфолипидов. Из других протеинкиназ важное значение имеет активация проте-инкиназ, способствующих биосинтезу матричной РНК, полиами­нов и переносу метальных групп.

Поскольку транспорт глюкозы в клетку является Са-зависи-мым процессом, то поток ионов Са 2+ играет важную роль в уве­личении скорости ее транспорта, т. е. поставки исходного ма­териала для обеспечения множества энергозависимых синте­тических процессов. Повышенный транспорт аминокислот и нуклеотидов в клетку вызывает повышенное образование липо-сом, увеличение синтеза рибосомной и матричной РНК и синте­за белка в целом.

Поток ионов Са 2+ активирует сериновую эстеразу, вызываю­щую повышение клеточной подвижности благодаря изменениям в системе циклических нуклеотидов. Кроме того, сериновая эстера-за опосредованно активирует ядерную аденилатциклазу. Увеличе­ние в ядре концентрации цАМФ вызывает активацию киназ, спе­цифически фосфорилирующих кислые негистоновые белки, регу­лирующие транскрипцию и синтез ДНК. Это приводит к синтезу РНК и ДНК, начинающегося на 3-й сутки и достигающего макси­мума на 4...6-е сутки.

Среди факторов, влияющих на активацию лимфоцитов, следу­ет отметить следующие:

антигены, к которым имеются специфические рецепторы на лимфоцитах; популяцию таких лимфоцитов называют антиген-связывающими клетками;

антитела к иммуноглобулинам; сшивка поверхностных имму­ноглобулинов В-клеток с бивалентными антителами к этим имму­ноглобулинам;

интерлейкины IL-1, IL-2;

инсулин; он опосредованно, через активацию аденилатцикла­зы, активирует лимфоциты.

Ингибирующее влияние на лимфоциты оказывают следую­щие факторы:

липиды; наибольшей ингибирующей способностью из липо-протеидов обладают липопротеиды очень низкой плотности (ЛОНП), обусловливающие разобщение между потоком ионов Са 2+ в клетку и концентрацией образующихся при этом цикличес­ких нуклеотидов;

фрагменты компонентов системы комплемента СЗе, СЗс и C3d; они ингибируют пролиферацию Т-клеток и синтез антител в ответ на стимуляцию с помощью антигена.


Несмотря на то что механизмы активации лимфоцитов раз­личных популяций характеризуются определенной общностью, следует отметить и те особенности, которые наблюдаются при активации Т- и В-лимфоцитов, имеющих различные поверхност­ные маркеры, с помощью которых эти клетки взаимодействуют с внешними факторами.

Активация В-лимфоцитов. В-лимфоциты реагируют на три раз­личных типа антигенов:

2. Тимуснезависимый антиген типа 2 (например, не­которые линейные антигены, имеющие часто повторяющуюся, определенным образом организованную детерминанту, - полиме­ры D-аминокислот, поливонил-пирролидон, полисахарид пнев­мококков).

Эти антигены, длительно персистируя на поверхности спе­циализированных макрофагов краевого лимфатического узла и селезенки, специфически связываются с иммуноглобулиновыми рецепторами В-клеток. Таким образом, оба тимуснезависимых ан­тигена способны непосредственно, т. е. без участия Т-клеток, сти­мулировать В-лимфоциты и вызывать преимущественно синтез IgM. Индуцируемый ими иммунный ответ практически не сопро­вождается формированием клеток памяти.

3. Тимусзависимый антиген. Многие антигены
относятся к группе тимусзависимых. В отсутствие Т-лимфоцитов
эти антигены лишены иммуногенности - связавшись с В-клеточ-
ным рецептором, они, подобно гаптенам, не способны активиро­
вать В-клетку. Одна антигенная детерминанта тимусзависимого
антигена связывается с В-клеткой, а остальные - с Т-хелпером,
активируя его. Т-хелперы должны распознавать детерминанты но­
сителя на поверхности реагирующей В-клетки.

Антиген, связавшийся с поверхностными /gA-клетками, попа­дает в эндосомы вместе с молекулами МНС класса II, а затем возвращается на поверхность А-клетки в процессированной фор­ме. Он ассоциирован с молекулами МНС класса II и доступен для распознавания специфическими Т-хелперами. Носитель процессируется в В-клетках, запрограммированных на синтез антител к гаптену. После стимуляции Т-хелперами, распознаю­щими процессированный носитель, В-клеткам удается выпол­нить свою программу, т. е. начать производить антитела, реаги­рующие с гаптеном.

Механизм активации клеток. Связывание поверхностных рецеп­торов (IgM) В-клеток с антигеном или антителами к этим рецеп­торам вызывает совокупность последовательных реакций, анало­гичных реакциям при активации Т-клеток (поступление в В-лим-фоцит ионов Са 2+ и активация протеинкиназ) - это один меха­низм. Другой, имеющий важное значение для Т-зависимых ан-

Тигенов, - это увеличение экспрессии поверхностных молекул МНС класса II уже на самых ранних этапах активации В-клеток. С моле­кулами МНС класса II и процессированным антигеном связывается Т-хелпер, который продуцирует факторы (например, BSF-1 - от англ. B-cell stimulatory factor), обусловливающие переход В-кле­ток в фазу G-1 клеточного цикла. Как и активированная Т-клетка, стимулированный В-лимфоцит приобретает многочисленные по­верхностные рецепторы для ростовых факторов, выделяемых Т-хел-перами, в этом состоянии он готов к пролиферации - основному процессу в следующей фазе иммунного ответа.

Первыми начинают делиться Т-хелперы, на поверхности ко­торых экспрессируются высокоаффинные рецепторы к IL-2. Эти клетки пролиферируют в ответ либо на собственный IL-2, либо на IL-2, продуцируемый субпопуляцией Т-хелперов. Проли­ферацию В-клеточного клона обеспечивают Т-клеточные раство­римые факторы, в частности BSF-1 (фактор роста В-клеток, име­нуемый чаще интерлейкином-4), выделяемые активированными Т-клетками. Под влиянием других факторов (например, BCDF - от англ. B-cell differentiation factor) происходит созревание клона В-лимфобластов и ускорение их преобразования в плазматичес­кие клетки с высоким уровнем секреции IgM. Другой дифферен-цировочный фактор BCDF (также синтезируется активирован­ными Т-хелперами) переключает синтез с IgM на IgG и индуциру­ет те изменения, которые необходимы для обеспечения высокой скорости синтеза антител.

Активация Т-лимфоцитов. Для активации необходимо два сиг­нала. Роль первого сигнала может выполнять антиген (или мито-ген), связанный с молекулой МНС класса II на поверхности анти-генпрезентирующей клетки. Тройное взаимодействие между ан­тигеном, гликопротеином МНС и рецептором Т-лимфоцита гене­рирует сигнал, передаваемый через комплекс рецептора с моле­кулой CD-3 (это мембраносвязанный белковый комплекс, пред­ставляющий собой антигенспецифический Т-клеточный ре­цептор периферических Т-лимфоцитов), и одновременно обес­печивает воздействие на клетку высокой локальной концентра­ции IL-1 (второй сигнал), продуцируемого антигенпрезентирую-щей клеткой.

Активированные Т-клетки секретируют:

IL-2, стимулирующий деление клеток, имеющих рецептор к IL-2;

лимфокин BSF-1, активирующий В-клетки;

лимфокин BSF -2, стимулирующий клональную экспансию ак­тивированных В-лимфоцитов;

лимфокин BCDF -фактор дифференцировки В-клеток, спо­собствующий созреванию клеток с высокой скоростью секре­ции IgM;

лимфокин BCDF-фактор, вызывающий переключение с син­теза IgM на IgG и высокую скорость секреции последнего.



© 2024 yanaorgo.ru - Сайт о массаже. В здоровом теле, здоровый дух