Что такое коронный разряд. Такие разные разряды. Смотреть что такое "Коронный разряд" в других словарях

Что такое коронный разряд. Такие разные разряды. Смотреть что такое "Коронный разряд" в других словарях

Непременным условие возникновения коронного разряда является резкая неоднородность электрического поля (у электрода поле должно быть сильнее чем в межэлектродном промежутке). Так обычно бывает, когда характерный размер электрода гораздо меньше межэлектродного расстояния.

Имеющиеся для простых геометрий точные решения уравнений электростатики незаменимы при построении теории короны и интерпретации экспериментов

Характерное давление существования коронного разряда

Коронный разряд принадлежит к числу самостоятельных, и условие его возникновения отражает физический механизм воспроизводства электронов в той области усиленного поля, где происходит ионизация. Механиз размножения электронов существенно зависит от полярности коронирующего электрода.

Вкоронирующем слое поле велико, электроны ионизуют и возбуждают атомы

При
ионизации нет, есть только дрейф

    Отрицательная корона

Если электрод является катодом(такую корону называют отрицательной), происходит размножение лавин. Вторичным процесом служит эмиссия с катода, а возможно, и фотоионизация в объеме газа. Зажигание отрицательной короны, в принципе, не отличается от таунсендовского пробоя и зажигания темного таунсендовского разряда

На катоде: γ- процессы

В слое – ионизация электронами

Во внешней области : электроны и отрицательные ионы (в воздухе) образуют отрицательный объемный заряд, ограничивающий ток короны даже без добавочноо сопротивления.

Корона – незавершенный пробой – пробой только в области коронирующего слоя

    Положительная корона

Если острие, проволока являются анодом (положительная корона), удаленный большой катод, около которого поле слабое, не принимает участия в размножении. Воспроизведение электронов обеспечивают вторичные фотопроцессы в газе в зоне острия. В отличие от ровного свечения отрицательной короны в положительной наблюдаются светящиеся нити, разбегаюиеся от острия. Пологают, что это - стримеры. В качестве критерия возникновения положительной короны можно принять условие возникновения стримера.

На катоде: нет ничего – очень далеко

В слое – ионизация электронами и возбуждение.

Источник электронов – фотоионизация на границе слоя

Во внешней области : положительный объемный заряд

Замечание: Увеличение напряжения в обоих случаях приводит к полному пробою

Критерии возникновения короны накладывают условие глвным образом на величину масимального поля около коронирующего электрода, которая должна превышать некоторый нижний предел Е к

Пороговое напряжение для зажигания короны связано с тебуемым значением поля электростатическм законом распределения поля в промежутке. Для критического поля зажигания короны между коаксиальными цилиндрами Пик (1929 г) установил эмпирическую зависимость:

- отношение плотности воздуха к нормальной плотности

- радиус коронирующего электрода

- напряженность электрического поля на поверхности коронирующего электрода

Вольт-амперная характеристика короны

Исходные данные:

    Толщина коронирующего слоя и падение напряжения в нем малы по сравнению с внешней областью

    Подвижность частиц – b(и для электронов и для ионов)

Погонная плотность тока:

Ток на внешний электрод (*)

изJ=const

Для цилиндра
при отсутсвии пространственного заряда

Считаем

- напряженность электрического поля на внутренней границе (внешней является разряд

интегрируем от доR,
и

Т.к.

(**)

можно считать равной на этом значении поля перкращается пробой

(пространственный заряд мал, поэтому используются формулы электростатики)

Подставляем E R в формулу для погонной плотности тока (*)

Подставляем E 0 и ρ в выражение дляU(**) и решаем относительноJ:

Если
мало, то

Замечание: это очень приближенная теория, т.к. в короне всегда сильные флуктуации

Так как пространсвенный заряд в коронном разряде не очень велик, то для вычиления тока в ней часто используют формулы электростатики.

Контрольные вопросы к лекции №10:

    Назовите необходимое условие для зажигания короны?

    Какие виды коронного разряда бывают?

    Какой механизм размножения частиц при отрицательном коронируюещм электроде?

    Какой механизм размножения частиц при положительном коронируюещм электроде?

    Как выглядит критерий Пика, для какой задачи он выведен?

    Как происходит перенос тока за область размножения частиц?

    Где можно наблюдать коронный разряд?

    При каких давлениях существует коронный разряд?

    Какое свечение у короны с отрицательным электродом?

    На что накладывают ограничение критерии зажигания корониы?

Целью работы: Является ознакомление с основными свойствами коронного разряда и исследование работы стабилитронов на их основе.

Коронный разряд является самостоятельным разрядом в сравнительно плотном газе.

Если к двум электродам, между которыми находится газовый промежуток, приложить электрическое поле, то при определенной разности потенциалов между электродами, которую назовем критической и обозначим через U 0, возникает коронный разряд. Его появление существенным образом зависит от конфигурации электродов. Легче всего коронный разряд возникает между остриями, тонкими проволочками, шарами малого диаметра и т. п. Внешне коронный разряд проявляется в том, что в небольшом объеме газа (воздуха) около одного или обоих электродов возникает слабое свечение (в воздухе – сине-зеленого цвета). При прочих равных условиях вероятность появления свечения вокруг электрода, а, следовательно, короны, тем больше, чем меньше радиус кривизны электродов. Электрод, вокруг которого наблюдается свечение, называют коронирующим электродом. Свечение, возникающее при коронном разряде около электрода, связано с элементарными процессами, происходящими на границе электрод – воздух или в объеме воздуха вблизи электрода. В результате элементарных процессов в небольшом объеме воздуха вблизи электрода протекают ионизация, возбуждение, диссоциация молекул азота и кислорода. Естественно, что в этом объеме воздуха должны развиваться и обратные процессы: рекомбинация ионов и электронов, образование отрицательных ионов, переход возбужденных молекул (атомов) из возбужденных состояний в нормальные с излучением квантов света и т. д. По своему спектральному составу свечение, наблюдаемое при коронном разряде в воздухе, состоит преимущественно из молекулярных полос испускания, принадлежащих второй положительной системе полос молекулярного азота и первой отрицательной системе полос ионизованного молекулярного кислорода, благодаря чему свечение концентрируется в сине-зеленой и ультрафиолетовой областях спектра.

Если коронирующий электрод присоединить к положительному полюсу источника питания, то коронный разряд называется положительной короной. При присоединении коронирующего электрода к отрицательному полюсу – отрицательной короной. Практически различия между спектральным составом свечения, возникающего при положительной и отрицательной короне, не существует, хотя есть некоторая разница в самом характере свечения. В случае положительной короны свечение вокруг коронирующего электрода распределяется равномернее, чем при отрицательной короне. В последнем случае свечение сосредоточено у отдельных точек коронирующего электрода. Кроме того, критические потенциалы коронного разряда и искрового пробоя U П неодинаковы.

Возникновение коронного разряда объясняется, появлением вблизи коронирующего электрода резкой неоднородности электрического поля, значительно превосходящей напряженность электрического поля на других участках воздушного промежутка между электродами. Для возникновения коронного разряда напряженность поля у электрода должна превосходить электрическую прочность воздуха. В результате большой напряженности электрического поля слой воздуха вблизи коронирующего электрода будет пробит и станет проводящим. При этом около электрода возникает корона. Радиус проводящего слоя возрастает до тех пор, пока на его границе напряженность электрического поля не станет равной электрической прочности воздуха. Таким образом, при коронном разряде пробой газа распространяется не на весь воздушный междуэлектродный промежуток. Если приложенную к электродам разность потенциалов увеличивать сверх критического потенциала U 0, то с повышением U – сила разрядного тока быстро увеличивается, а толщина коронирующего слоя около электрода возрастает. Когда разность потенциалов между электродами достигает нового значения U П, наступает искровой пробой всего газового промежутка.

Отрицательный коронный разряд

В разрядном промежутке коронного разряда электроны осуществляют ударную ионизацию, возбуждение и диссоциацию молекул воздуха. В итоге каждый свободный электрон способен на своем пути к аноду создать ряд новых электронов, образующих движущуюся от катода к аноду лавину. Наряду с образованием такой лавины в зоне ионизации появляются и положительные ионы, которые под действием электрического поля начинают двигаться к катоду, а также значительное число возбужденных молекул и атомов. При этом, например, молекулы воздуха под действием электронного удара в коронном разряде могут возбуждаться до высоких энергий. Такие возбужденные молекулы (атомы) при переходе в нормальное состояние испускают кванты с большой энергией, преимущественно в области вакуумного ультрафиолета, для которых характерен весьма большой показатель поглощения. Поглощаясь в воздушном промежутке, кванты будут ионизовать новые молекулы. Появление новых центров ионизации приводит к возникновению новых электронных лавин.

По мере удаления от катода напряженность электрического поля убывает, что в свою очередь приводит к уменьшению скорости движения (энергии) свободных электронов в лавине. На некотором расстоянии L От катода электрическое поле ослаблено настолько, что свободные электроны, движущиеся в лавине, практически перестанут производить дальнейшую ионизацию молекул (атомов) воздуха, из-за чего коэффициент объемной ионизации станет приблизительно равным нулю. Оставшиеся в воздушном промежутке свободные электронные с малыми энергиями либо рекомбинируют с положительными ионами, либо же, взаимодействуя с атомами и молекулами кислорода, образуют отрицательные ионы. Вероятность образования отрицательных ионов в воздухе при нормальной плотности весьма велика из-за большого электронного сродства атомарного и молекулярного кислорода.

Следовательно, на расстоянии от катода свыше L , то есть за пределами области отрицательного коронного разряда, образуется внешняя униполярная область, носителями тока в которой являются отрицательные ионы кислорода (O2, О-). Под действием электрического поля такие ионы медленно перемещаются к аноду. Из-за малой подвижности отрицательных ионов кислорода за пределами области коронного разряда в воздушном промежутке образуется отрицательный пространственный заряд, который будет препятствовать продвижению к аноду отрицательных ионов, что приведет к ограничению силы тока коронного разряда.

Несколько иная картина создается при образовании отрицательной короны в электроположительных газах, например, в чистом азоте. В этом случае за пределами области коронного разряда также находятся отрицательные заряды, однако, носителями тока являются свободные электроны. Поскольку подвижность свободных электронов во много раз больше подвижности отрицательных ионов, при одной и той же силе тока плотность объемного заряда, образуемая свободными электронами, значительно меньше плотности объемного заряда, создаваемого отрицательными ионами кислорода. Поэтому в чистых электроположительных газах отрицательный объемный пространственный заряд ограничивает ток коронного разряда гораздо слабее, чем в газах, способных образовывать отрицательные ионы.

Положительный коронный разряд

В этом случае коронирующий электрод является анодом, а катодом служит электрод с большим радиусом кривизны (например, плоскость). При положительной короне основная роль отводится электронам, возникающим в процессе объемной фотоионизации молекул воздуха между электродами. При достаточно большой напряженности электрического поля свободный электрон приобретает значительную энергию на своем пути движения к аноду. Электроны, движущиеся в сильном электрическом поле, на своем пути к аноду станут ионизовать молекулы воздуха, что приведет к образованию электронной лавины, которая в конечном итоге попадает на анод. У анода, то есть в области положительного коронного разряда, протекают не только процессы ионизации электронным ударом, но и процессы возбуждения молекул воздуха и их продуктов диссоциации. Кванты света, испущенные такими молекулами (атомами), будут ионизовать в объеме газа новые молекулы. Образовавшиеся таким образом фотоэлектроны пополняют убыль электронов в области коронного разряда.

За пределами области положительного коронного разряда в межэлектродном воздушном промежутке находятся положительные ионы азота N2+, N+, которые под действием электрического поля медленно перемещаются к катоду. Эти положительные ионы создают положительный пространственный заряд, ограничивающий силу тока коронного разряда. Как и в случае отрицательной короны, при увеличении разности потенциалов между электродами толщина коронирующего слоя в положительной короне возрастает и при некоторой критической разности потенциалов наступает искровой пробой.

Сила тока коронного разряда определяется величиной сопротивления внешней области короны. Поэтому для нахождения вольтамперной характеристики надо решать уравнение Пуассона для внешней области короны. Полная система уравнений, описывающих распределение поля во внешней области коронного разряда, имеет вид:

Обычно на практике пользуются простыми приближенными формулами, либо найденные эмпирически, либо выведенными на основе теоретических расчетов при значительном упрощении задачи.

Дейтш, решая задачу приближенно, вывел формулы характеристики короны для следующих случаев:

– провод – плоскость

Где H – расстояние от провода до плоскости; R 0 – радиус коронирующего провода; K – подвижность заряженных частиц (положительная K +=1.8·10–4 м2/B·сек, отрицательная K – =1.6·10–4 м2/B сек); U 0 – напряжение возникновения короны;

– провод на равном расстоянии H между двумя плоскостями

– проводов радиуса R 0, расположенных на равном расстоянии от плоскостей и на расстоянии D один от другого;

Константа А рассчитывается отдельно для каждого значения H и D .

Для любой конфигурации электродов ток коронного разряда можно представить следующим выражением

Прерывистые явления в коронном разряде

И положительная, и отрицательная корона сопровождается в воздухе характерным звуковым явлением – шипением. Это шипение носит несколько различный характер в случае положительной и отрицательной короны и при каждой из них изменяется с изменением силы коронного тока. Таким образом, уже непосредственное визуальное наблюдение коронного разряда указывает на ряд прерывистых явлений в короне. Прерывистый характер коронного разряда был обнаружен Тричелем. Коронный ток, как показал Тричель, слагается из периодических и правильно чередующихся импульсов. При повышении напряжения сила тока в каждом импульсе остается неизменной, а общая сила тока коронного разряда увеличивается за счет увеличения частоты чередования импульсов.

Каждый регулярный импульс представляет собой обычным образом развивающийся ряд лавин, сопровождаемой фотоионизацией в окружающем объеме газа. Как показали исследования, прерывистые явления тока коронного разряда наблюдались только в электроотрицательных газах и при наличии последних в смеси газов хотя бы в небольшом количестве.

Частота чередования импульсов Тричеля обуславливается, временем накопления и рассасывания пространственного заряда.

Применение коронного разряда в технике

Вольт-амперная характеристика тока коронного разряда данного промежутка зависит от геометрии промежутка, наполняющего его газа и состояния электродов. В некоторых газоразрядных приборах используется зависимость "критического потенциала" от одного из параметров разрядного промежутка (приборы для определения температуры, давления, влажности газа).

Отрицательный коронный разряд применяется для зарядки и последующего осаждения электрическим полем взвешенных в газе посторонних мелких частиц: пылинок, частиц дыма (аэрозолей) мелко распыленных продуктов и т. д. Такая аппаратура носит название электрофильтра.

Если через область с коронным разрядом проходят неодинаковые по размерам и физической природе частицы, то происходит их частичное разделение. Это явление используется в электросепараторах.

Коронный разряд также применяется для непрерывного и безинерционного анализа газовых смесей. В этом случае при изменении состава газа в разрядном промежутке изменяется напряжение коронного разряда.

Большое различие в подвижности положительных ионов и электронов в разрядном промежутке позволяет использовать коронный разряд также для выпрямления и стабилизации высокого напряжения.

В последнее время коронный разряд нашел применение в экспериментальной ядерной физике. Счетчики медленных нейтронов (типа СНМ-9, СНМ-13) работают в режиме коронного разряда. Широкое применение коронный разряд находит в электрографии, в электроокраске, медицине, сельском хозяйстве, в промышленности для нанесения порошковых покрытий, в текстильной промышленности и т. д.

Стабилитроны коронного разряда

Стабилитроны – это газоразрядные неуправляемые приборы, предназначенные для поддержания неизменным выходного напряжения на нагрузке при изменении нагрузочного тока или напряжения в сети. Стабилитроны коронного разряда применяются для стабилизации напряжения в маломощных нагрузках. Приборы выполняются в стеклянных или керамических оболочках – баллонах, наполненных смесью инертных газов.

Последовательно в цепь со стабилитроном включается сопротивление для ограничения разрядного тока и обеспечения работы схемы стабилизации. Нагрузка включается параллельно стабилитрону.

При увеличении напряжения на входе увеличивается ток через стабилитрон и ограничительное сопротивление R Б. За счет увеличения тока через R Б на нем увеличивается падение напряжения, а напряжение на стабилитроне остается практически неизменным. При уменьшении входного напряжения ток через стабилитрон и через резистор R Б уменьшается, падение напряжения на R Б уменьшается, а напряжение на стабилитроне остается неизменным. Так как, нагрузка подключена параллельно стабилитрону, то на ней поддерживается постоянное напряжение, не зависящее от колебаний входного напряжения.

Стабилитроны коронного разряда предназначены как для непосредственной стабилизации напряжения, так и в качестве опорных элементов в высоковольтных электронных стабилизаторах при токах не более 1.5 мА и напряжениях 0.3…30 кВ. Применяются в цепях питания фотоумножителей, электронно-оптических преобразователей изображения, в цепях отражательных электродов клистронов, в цепях электрографических установок и т. д. Баллоны наполняются смесью водорода и азота. Эти стабилитроны относительно стабилитронов тлеющего разряда имеют более пологие вольт-амперные характеристики и увеличенную проводимость до возникновения разряда (утечка до 2 мкА). Для возникновения разряда необходимо время до 30 сек.

Сопротивление нагрузки R Н должно быть такой величины, чтобы при известных изменениях U Вх и токе нагрузки I Н ток через стабилитрон I Ст не превышал значения максимального тока стабилизации, указанного в справочнике.

Стабилизирующие свойства стабилитронов коронного разряда определяются их динамическим сопротивлением R Д, которое находится из вольт-амперной характеристики.

Коэффициент стабилизации в зависимости от изменения входного напряжения при постоянном токе через нагрузку I Н определяется как:

Коэффициент стабилизации в зависимости от изменения тока нагрузки при постоянном входном напряжении определяется как:

Если входное напряжение в N раз больше выходного, то есть ,

То сопротивление R Б можно определить из выражения

В предлагаемой работе схема лабораторной установки позволяет проводить исследование стабилитрона коронного разряда СГ302С. Балластное сопротивление R Б и сопротивление нагрузки R Н выполнены так, что можно установить требуемое значение тока нагрузки и необходимую по расчету величину балластного сопротивления.

Порядок выполнения работы

1. Ознакомиться с руководством к лабораторной работе и схемой лабораторной установки. Установить ручку регулятора напряжения в положение, соответствующее нулевому напряжению.

2. Снять ВАХ отрицательного коронного разряда промежутка игла – плоскость для трех фиксированных расстояний между электродами: H 1 = 5.5 мм; H 2 = 6.5 мм; H 3 = 8 мм.

3. Снять ВАХ отрицательного коронного разряда промежутка ряд игл – плоскость для двух значений расстояния между иглами в ряду B = 7.5 мм и B = 2.5 мм. В обоих случаях расстояние между электродами Н = 6.5 мм. Для каждого случая рассчитать ток с одного острия.

4. По указанию преподавателя для одного значения Н снять ВАХ промежутка игла – плоскость для положительной короны.

5. С помощью осциллографа исследовать прерывистые явления коронного разряда с острия для отрицательной короны. Снять зависимость частоты и амплитуды колебаний тока коронного разряда от среднего значения тока для трех одиночных игл.

Исследование работы стабилитрона коронного разряда СГ302С-1 проводится по указанию преподавателя. ВНИМАНИЕ! Ток через стабилитрон не должен превышать 100 мкА.

6. Снять ВАХ стабилитрона I Ст = F (U Ст).

R Б1… R Б7 = 10 мОм, 5.1 мОм, 1.8 мОм, 750 кОм, 510 кОм, 300 кОм, 1.3 мОм.

7. Снять нагрузочную характеристику стабилитрона I Н = F (U Н), U Н = F (I Н). R Н1… R Н7 = 1.8, 5.1, 10, 10, 10, 20, 10 мОм.

8. Снять стабилизационную характеристику U Н = F (U Вх) для указанного режима стабилизации.

1. Цель работы. Схему лабораторной установки.

2. Таблицы с экспериментальными данными и графики полученных зависимостей.

Для возбуждения коронного разряда нужны два электрода — один произволь­ной формы, другой с малым радиусом кривизны, между ними газ, например воздух, под давлением, близким к атмосферному. Элект­роды и газ — это вещества. Для построения вепольной системы требуется еще и электрическое поле. Оно создается источником высокого напряжения, к полюсам которого подсоединяют электро­ды. При включении источника между электродами возникает неод­нородное электрическое поле. Неоднородность обусловлена боль­шой кривизной поверхности одного из электродов. Так, для про­вода диаметром 20 мкм, подвешенного над плоскостью на высоте 200 мм, отношение напряженности поля у поверхности провода к напряженности у плоскости равно примерно 10 000.

Коронный разряд — источник свободных зарядов, ионов и электронов. Заряды возникают в чехле короны и поступают в зо­ну дрейфа, дальнейшим их движением мы можем управлять с по­мощью полей. Ионы могут использоваться либо непосредственно (носители вещества и заряды), либо для создания зарядов на поверхности микрообъектов. Многоплановость применения коронного разряда как ис­точника ионов предопределена его уникальными свойствами:

Низкой температурой (в чехле она не выше 150 °С, в зоне дрейфа — практически равна температуре окружающей среды, в то время как в дуге или скользящих разря- дах — до 1500 °С и выше);

Отсутствием движущихся частей (в отличие от трибоэлектрических зарядных установок);

Высокой стабильностью и непрерывностью работы, просто­той регулировки;

Высоким КПД, поскольку нагрев в короне мал, и почти вся энергия расходуется на разделение и перемещение зарядов.

Корона применяется для получения заряженных слоев на больших поверхностях: игольчато-коронные нейтрализаторы статического электричества (а. с. 446956, 433658), коронатор для электрофотографических аппаратов (а. с. 504173), использование слоя зарядов на поверхности ли­стовых и рулонных диэлектрических материалов в качестве свое­образного «электрода» для измерения сопротивления этих мате­риалов (а. с. 369513, 459742, 494596).

Если через внешнюю зону короны пропускать вещество в диспергированном виде, ионы оседают на поверхности частиц, движу­щихся к осадительным элект­родам: электрофильтр с переменной по длине интенсивностью ко­роны (а.


с. 553000), электрокоронные сепарато­ры (а. с. 445470, 504559, 564883), усиление коагу­ляции аэрозолей в коронном разряде (539607), электроосаждение порошко­образных материалов (а. с. 396724, 559726), зарядка частиц элект­рофотографического проявителя (а. с. 455314, 511563).

Характеристики коронного разряда (начальное напряжение, ток) чувствительны к изменению таких параметров газа, как наличие примесей (в молекулярном и аэрозольном видах), давление, ско­рость потока. На этом основано измерение параметров газа в коронном разряде.

В патенте США 3742475 предлагается коронно-разрядный датчик загазованности для обнаружения галогенных примесей, например фреона; по патенту США 3569825 примеси электроотри­цательных газов измеряются по колебаниям тока коронного раз­ряда. В а. с. 131903, 131904 описан коронно-разрядный датчик для безынерционного анализа газовых смесей, в а. с. 266283 предло­жен коронный гигрометр.

Осаждение ионов на частицы аэрозоля, находящиеся во внешней зоне, уменьшает ток короны, поскольку частицы движут­ся медленнее ионов. Естественно, что по уменьшению тока можно измерить концентрацию и гранулометрический состав дисперсной фазы аэрозоля, что и положено в основу различных вариантов та­кого способа (а. с. 340942, 372483, 453626, 575547).

В а. с. 217656 предложен коронно-разрядный датчик дав­ления газа, в а. с. 486402 — способ определения давления напол­няющего газа в лампах накаливания по току коронного разряда.

Коронный разряд используют также для создания в боль­ших объемах необходимой ионизационной обстановки (аэроионизаторы). Примеры: коронное антисептирование пище­вых продуктов (а. с. 459210), интенсификация проращиваниязеленого солода (а. с. 553280), повышение урожайности овощей (а. с. 660612).

Таким образом, коронный разряд можно использовать в следующих случаях:

· для создания заряженных слоев на больших поверхностях;

· зарядки аэрозолей;

· дозировки порошков;

· регулирования теплопередачи;

· изучения физикиионов;

· измерения состава газовых смесей;

· измерения параметров взвешенных в газе аэрозолей;

· измерения давления газа;

· измерения скорости газовых потоков;

· измерения кривизны поверхности (радиусов проводов, кромок);

· осуществления химических реакций (озонаторы, аэроионизаторы, воздействие на поверхность).

Большой отряд воинов Древнего Рима находился в ночном походе. Надвигалась гроза. И вдруг над отрядом показались сотни голубоватых огоньков. Это засветились острия копий воинов. Казалось, железные копья солдат горят не сгорая! Природы удивительного явления в те времена никто не знал, и солдаты решили, что такое сияние на копьях предвещает им победу. Тогда это явление называли огнями Кастора и Поллукса – по имени мифологических героев-близнецов. А позднее переименовали в огни Эльма – по названию церкви святого Эльма в Италии, где они появлялись.

Особенно часто такие огни наблюдали на мачтах кораблей. Римский философ и писатель Луций Сенека говорил, что во время грозы «звезды как бы нисходят с неба и садятся на мачты кораблей». Среди многочисленных рассказов об этом интересно свидетельство капитана одного английского парусника.

Случилось это в 1695 году, в Средиземном море, у Балеарских островов, во время грозы.

Опасаясь бури, капитан приказал спустить паруса. И тут моряки увидели в разных местах корабля больше тридцати огней Эльма. На флюгере большой мачты огонь достиг более полуметра в высоту. Капитан послал матроса с приказом снять его. Поднявшись наверх, тот крикнул, что огонь шипит, как ракета из сырого пороха. Ему приказали снять его вместе с флюгером и принести вниз. Но как только матрос снял флюгер, огонь перескочил на конец мачты, откуда снять его было невозможно.

Еще более впечатляющую картину увидели в 1902 году моряки парохода «Моравия». Находясь у островов Зеленого Мыса, капитан Симпсон записал в судовом журнале: «Целый час в море полыхали молнии. Стальные канаты, верхушки мачт, нок-реи, ноки грузовых стрел – все светилось. Казалось, что на шканцах через каждые четыре фута повесили зажженные лампы, а на концах мачт и нок-рей засветили яркие огни». Свечение сопровождалось необычным шумом:

«Словно мириады цикад поселились в оснастке или с треском горел валежник и сухая трава...»

Огни святого Эльма разнообразны. Бывают они в виде равномерного свечения, в виде отдельных мерцающих огоньков, факелов. Иногда они настолько похожи на языки пламени, что их бросаются тушить.

Американский метеоролог Хэмфри, наблюдавший огни Эльма на своем ранчо, свидетельствует: это явление природы, «превращая каждого быка в чудище с огненными рогами, производит впечатление чего-то сверхъестественного». Это говорит человек, который по самому своему положению не способен, казалось бы, удивляться подобным вещам, а должен принимать их без лишних эмоций, опираясь только на здравый смысл. Можно смело утверждать, что и ныне, несмотря на господство, – далеко, правда, не повсеместное, – естественнонаучного мировоззрения, найдутся люди, которые, окажись они в положении Хэмфри, увидели бы в огненных бычьих рогах нечто неподвластное разуму. О средневековье и говорить нечего: тогда в тех же рогах усмотрели бы, скорее всего, происки сатаны.

Кор о нный разр я д, электрическая корона, разновидность тлеющего разряда ; возникает при резко выраженной неоднородности электрического поля вблизи одного или обоих электродов. Подобные поля формируются у электродов с очень большой кривизной поверхности (острия, тонкие провода). При Коронном разряде эти электроды окружены характерным свечением, также получившим название короны, или коронирующего слоя. Примыкающая к короне несветящаяся («тёмная») область межэлектродного пространства называется внешней зоной. Корона часто появляется на высоких остроконечных предметах (святого Эльма огни ), вокруг проводов линий электропередач и т. д Коронный разряд может иметь место при различных давлениях газа в разрядном промежутке, но наиболее отчётливо он проявляется при давлениях не ниже атмосферного.

Появление коронного разряда объясняется ионной лавиной. В газе всегда есть некоторое число ионов и электронов, возникающих от случайных причин. Однако, число их настолько мало, что газ практически не проводит электричества. При достаточно большой напряженности поля кинетическая энергия, накопленная ионом в промежутке между двумя соударениями, может сделаться достаточной, чтобы ионизировать нейтральную молекулу при соударении. В результате образуется новый отрицательный электрон и положительно заряженный остаток – ион.

Свободный электрон 1 при соударении с нейтральной молекулой расщепляет ее на электрон 2 и свободный положительный ион. Электроны 1 и 2 при дальнейшем соударении с нейтральными молекулами снова расщепляет их на электроны 3 и 4 и свободные положительные ионы, и т.д.

Такой процесс ионизации называют ударной ионизацией , а ту работу, которую нужно затратить, чтобы произвести отрывание электрона от атома – работой ионизации . Работа ионизации зависит от строения атома и поэтому различна для разных газов. Образовавшиеся под влиянием ударной ионизации электроны и ионы увеличивает число зарядов в газе, причем в свою очередь они приходят в движение под действием электрического поля и могут произвести ударную ионизацию новых атомов. Таким образом, процесс усиливает сам себя, и ионизация в газе быстро достигает очень большой величины. Явление аналогично снежной лавине, поэтому этот процесс был назван ионной лавиной.

Натянем на двух высоких изолирующих подставках металлическую проволоку ab , имеющую диаметр несколько десятых миллиметра, и соединим ее с отрицательным полюсом генератора, дающего напряжение несколько тысяч вольт. Второй полюс генератора отведем к Земле. Получится своеобразный конденсатор, обкладками которого являются проволока и стены комнаты, которые, конечно, сообщаются с Землей.

Поле в этом конденсаторе весьма неоднородно, и напряженность его вблизи тонкой проволоки очень велика. Повышая постепенно напряжение и наблюдая за проволокой в темноте, можно заметить, что при известном напряжении возле проволоки появляется слабое свечение (корона), охватывающее со всех сторон проволоку; оно сопровождается шипящим звуком и легким потрескиванием. Если между проволокой и источником включен чувствительный гальванометр, то с появлением свечения гальванометр показывает заметный ток, идущий от генератора по проводам к проволоке и от нее по воздуху комнаты к стенам, между проволокой и стенами переносится ионами, образованными в комнате благодаря ударной ионизации. Таким образом, свечение воздуха и появление тока указывает на сильную ионизацию воздуха под действием электрического поля. Коронный разряд может возникнуть не только вблизи проволоки, но и у острия и вообще вблизи любых электродов, возле которых образуется очень сильное неоднородное поле.

Применение коронного разряда. Электрическая очистка газов (электрофильтры) . Сосуд, наполненный дымом, внезапно делается совершенно прозрачным, если внести в него острые металлические электроды, соединенные с электрической машиной, а все твердые и жидкие частицы будут осаждаться на электродах. Объяснение опыта заключается в следующем: как только и проволоки зажигается корона, воздух внутри трубки сильно ионизируется. Газовые ионы прилипают к частицам пыли и заряжают их. Так как внутри трубки действует сильное электрическое поле, заряженные частицы пыли движутся под действием поля к электродам, где и оседают.


Счетчики элементарных частиц . Счетчик элементарных частиц Гейгера – Мюллера состоит из небольшого металлического цилиндра, снабженного окошком, закрытым фольгой, и тонкой металлической проволоки, натянутой по оси цилиндра и изолированной от него. Счетчик включают в цепь, содержащую источник тока, напряжение которого равно нескольким тысячам вольт. Напряжение выбирают необходимым для появления коронного разряда внутри счетчика.

При попадании в счетчик быстро движущегося электрона последний ионизирует молекулы газа внутри счетчика, отчего напряжение, необходимое для зажигания короны, несколько понижается. В счетчике возникает разряд, а в цепи появляется слабый кратковременный ток. Чтобы обнаружить его, в цепь вводят очень большое сопротивление (несколько мегаом) и подключают параллельно с ним чувствительный электрометр. При каждом попадании быстрого электрона внутрь счетчика листка электрометра будут откланяться.

Подобные счетчики позволяют регистрировать не только быстрые электроны, но и вообще любые заряженные, быстро движущиеся частицы, способные производить ионизацию путем соударений. Современные счетчики легко обнаруживают попадание в них даже одной частицы и позволяют поэтому с полной достоверностью и очень большой наглядностью убедиться, что в природе действительно существуют элементарные заряженные частицы.

Громоотвод . Подсчитано, что в атмосфере всего земного шара происходит одновременно около 1800 гроз, которые дают в среднем около 100 молний в секунду. И хотя вероятность поражения молнией какого-либо отдельного человека ничтожно мала, тем не менее молнии причиняют немало вреда. Достаточно указать, что в настоящее время около половины всех аварий в крупных линиях электропередачи вызывается молниями. Поэтому, защита от молнии представляет собой важную задачу.

Ломоносов и Франклин не только объяснили электрическую природу молнии, но и указали, как можно построить громоотвод, защищающий от удара молнии. Громоотвод представляет собой длинную проволоку, верхний конец которой заостряется и укрепляется выше самой высокой точки защищаемого здания. Нижний конец проволоки соединяют с металлическим листом, а лист закапывают в Землю на уровне почвенных вод. Во время грозы на Земле появляются большие индуцированные заряды и у поверхности Земли появляется большое электрическое поле. Напряженность его очень велика около острых проводников, и поэтому на конце громоотвода зажигается коронный разряд. Вследствие этого индуцированные заряды не могут накапливаться на здании и молнии не происходит. В тех же случаях, когда молния все же возникает (а такие случаи очень редки), она ударяет в громоотвод и заряды уходят в Землю, не причиняя вреда зданию.

В некоторых случаях коронный разряд с громоотвода бывает настолько сильным, что у острия возникает явно видимое свечение. Такое свечение иногда появляется и возле других заостренных предметов, например, на концах корабельных мачт, острых верхушек деревьев, и т.д. Это явление было замечено еще несколько веков тому назад и вызывало суеверный ужас мореплавателей, не понимавших истинной его сущности.

Молния. Красивое и небезопасное явление природы – молния – представляет собой искровой разряд в атмосфере.

Уже в середине 18-го века обратили внимание на внешнее сходство молнии с электрической искрой. Высказалось предположение, что грозовые облака несут в себе большие электрические заряды и что молния есть гигантская искра, ничем, кроме размеров, не отличающаяся от искры между шарами электрической машины. На это указывал, например, русский физик и химик Михаил Васильевич Ломоносов (1711-65), наряду с другими научными вопросами занимавшийся атмосферным электричеством.

Это было доказано на опыте 1752-53 г.г. Ломоносовым и американским ученым Бенджамином Франклином (1706-90), работавшими одновременно и независимо друг от друга.

Ломоносов построил «громовую машину» - конденсатор, находившийся в его лаборатории и заряжавшийся атмосферным электричеством посредством провода, конец которого был выведен из помещения и поднят на высоком шесте. Во время грозы из конденсатора можно было рукой извлекать искры.

Франклин во время грозы пустил на бечевке змея, который был снабжен железным острием; к концу бечевки был привязан дверной ключ. Когда бечевка намокла и сделалась проводником электрического тока, Франклин смог извлечь из ключа электрические искры, зарядить лейденские банки и проделать другие опыты, производимые с электрической машиной (Следует отметить, что такие опыты чрезвычайно опасны, так как молния может ударить в змей, и при этом большие заряды пройдут через тело экспериментатора в Землю. В истории физики были такие печальные случаи. Так погиб в 1753 г. в Петербурге Г.В. Рихман, работавший вместе с Ломоносовым).

Обычная линейная молния представляет собой гигантский электрический искровой разряд между слоями атмосферы или между облаками и земной поверхностью длиной несколько километров при напряжении несколько сотен миллионов вольт и длительностью десятые доли секунды. Форма молнии обычно похожа на разветвленные корни разросшегося в поднебесье дерева. Тому есть свои причины.

Проводимость верхних слоев атмосферы достаточно велика, чтобы атмосферу можно было считать сферическим проводником. Существующее между отрицательно заряженной поверхностью Земли и положительно заряженной верхней атмосферой электрическое поле могло бы разрядиться менее чем за 5 минут из-за непрерывной ионизации молекул воздуха под действием космического излучения и естественной радиоактивности Земли. Однако этого не происходит, поскольку в результате грозовой активности поддерживается постоянный приток электронов к Земле. Разность потенциалов между нашим носом и ступнями могла бы достигать 200 В, если бы не высокая проводимость человеческого тела.

При разряде молнии заряды в облаке распределяются следующим образом: в основании облака сосредотачивается относительно небольшой запас положительных зарядов, в середине – большой отрицательный, наверху – огромный положительный. Вначале возникает разряд между основанием облака и его отрицательно заряженной серединой, при котором электроны переходят в основание облака. Предельное напряжение пробоя, вызывающее образование ионизованного канала, составляет примерно 3 млн В/м. Далее разряд продвигается вниз в виде ступенчатого лидера, прыгающего скачками по 50 м с паузами по 50 мкс, и с каждым скачком отрицательный заряд перемещается из облака в нижнюю часть проделанного лидером канала. Светится лишь нижняя часть лидера, но из-за быстрого движения нам виден полностью светящийся канал. Лидер скачет по ломаной линии, отклоняясь под действием разбросанных в воздухе положительно заряженных островков. Если неоднородность велика, лидер может изменить направление с вертикального на горизонтальное.

Вблизи заостренных предметов на поверхности Земли электрическое поле достигает таких значений, что навстречу лидеру устремляется положительный заряд, а в месте встречи возникает яркая вспышка, продолжающаяся до полной нейтрализации электричества. Ярко светящаяся область устремляется вверх по каналу лидера и достигает облака. Если движение вниз совершается примерно за 20 мс, то обратное движение происходит всего за 0,1 мс. Диаметр разряда-лидера оценивается метрами, а обратного разряда – несколько сантиметров. Свечение происходит от центральной части канала. Из-за неспособности человеческого глаза следить за столь быстрыми движениями, светящимся кажется весь ствол с ответвлениями.

При вспышке молнии возникают импульсы электромагнитного излучения в широком диапазоне – от сверхнизких частот до 30 кГц и выше. Наибольшее излучение радиоволн находится в диапазоне от 5 до 10 кГц. Такие низкочастотные радиопомехи сосредоточены в пространстве между нижней границей ионосферы и земной поверхностью и способны распространяться на расстояния в тысячи километров от источника.

Электрический разряд молнии вызывает резкое расширение воздуха, в результате чего создается цилиндрическая ударная волна и образуется гром. Рядом с ударившей молнией можно расслышать шипение, производимое коронным разрядом, и следующий за ним щелчок – звук движущегося вверх сверхзвукового лидера. Сопровождающий молнию гром редко распространяется на расстояние более 25 километров, хотя те же орудийные выстрелы и взрывы снарядов разносятся значительно дальше. Дело в том, что скорость звука в теплом воздухе выше, чем в холодном. Поскольку с увеличением высоты температура уменьшается, верхняя часть звуковой волны, распространявшейся вначале горизонтально, движется медленнее, чем нижняя ее часть. Вследствие этого траектория волны загибается вверх. В холодный же день звук может отклоняться не вверх, а вниз, распространяясь на большие расстояние по поверхности земли (увы, в морозные дни молнии не сверкают). Кроме того, достигая относительно более теплых слоев стратосферы, траектория волны может искривиться таким образом, что снова устремляется вниз, поглощаясь и рассеиваясь рельефом местности. Между областью, которой достигает прямая звуковая волна, и отраженной от стратосферы областью находится "мертвая зона", в которой звук источника не слышен. За пределами мертвой зоны, вне видимости грозы, отраженный звук может появиться снова, предупреждая о нашествии стихии.

Иногда во время грозы можно наблюдать разряд молнии, обрывающийся на полпути к земле, что означает промежуточную нейтрализацию лидера положительным зарядом объемного воздушного скопления. Еще реже возникает картинка из нескольких параллельных разрядов, производящих впечатление свисающей с облака ленты – так называемая ленточная молния. "Лента" образуется при сильном ветре, перемещающем канал молнии с серией следующих друг за другом разрядов. Интересна по структуре и напоминает нанизанные на нитку бусинки четочная молния. Эффект четок возникает при сильно дожде, когда разряд частично заслонен каплями воды и дождевыми струями. В последнем случае участки канала молнии, совпадающие с направлением зрения наблюдателя, заметны несколько дольше остальных, поскольку видны с торца и дают больше света.

Причиной возникновения молнии, помимо распространенных природных явлений, могут послужить также ядерный взрыв, извержение вулкана и землетрясение. При взрыве водородной бомбы молнии могут возникать в результате разделения зарядов от гамма-излучения, а лидеры возникают вблизи металлических сооружений. Подобные лидеры молний, идущие снизу вверх, иногда наблюдаются над крышами небоскребов и остроконечными пиками гор. При вулканическом извержении раскаленная лава сползает в море и поднимает вверх облака положительно заряженного пара, электроны по каналу разряда затем движутся вверх. Что касается провоцирования гроз землетрясениями, ученые выдвигают гипотезу о пьезоэлектрическом эффекте в скальных глубинах, где распространяется сейсмическая волна. На подобном электрическом эффекте основано воспроизведение музыки с грампластинки.

Молниезащита. До изобретения электричества и громоотвода люди боролись с разрушительными последствиями ударов молний заклинаниями. В Европе действенным средством борьбы считался непрерывный колокольный звон во время грозы. Согласно статистике, итогом 30-летней борьбы с молниями в Германии стало разрушение 400 колоколен и гибель 150 звонарей.

Первым человеком, придумавшим эффективный способ нейтрализации молниевых ударов, стал небезызвестный гражданин США Бенджамин Франклин – универсальный гений своей эпохи (1706-1790).

Результатом семилетнего увлечения Франклина электричеством стало изобретение громоотвода. В 1750 Франклин предложил Лондонскому королевскому обществу поставить опыт с железной штангой, укрепленной на изолирующем основании и установленной на высокой башне. Он предполагал, что при приближении грозового облака к башне на верхнем конце первоначально нейтральной штанги сосредоточится заряд противоположного знака, а на нижнем – заряд того же знака, что у основания облака. Если напряженность электрического поля при разряде молнии возрастет достаточно сильно, заряд с верхнего конца штанги частично перетечет в воздух, а штанга приобретет заряд того же знака, что и основание облака.

Предложенный Франклином эксперимент был осуществлен не в Англии, а под Парижем (в местечке Марли) в 1752 году французским физиком Жаном д"Аламбером. Француз использовал вставленную в стеклянную банку, служившую изолятором, железную штангу длиной 12 м, но не водрузил ее на башню. В мае 1752 года ассистент ученого сообщил, что при прохождении грозового облака над штангой, при поднесении к ней заземленной проволоки возникали искры. В последующие годы Великой французской революции Робеспьер и Марат пытались каждый по-своему бороться с идеей громоотводов, за что даже «немножко порезали друг друга». В то время громоотводы ломали из благочестивых соображений, руководствуясь божественным происхождением человека и верой в "кару Божью".

Действие громоотвода не так просто, как может показаться на первый взгляд. Предполагается, что громоотвод притягивает приблизившегося к нему ступенчатого лидера, образуя защитный конус с углом 900 ниже верхушки громоотвода. Устройство простейшего громоотвода включает три основных элемента: молниеприемник, токоотвод и заземлитель. Часто молниеотвод имеет форму металлического штыря, троса или сетки., Устанавливать громоотвод необходимо на высоту с учетом 900 конуса защиты окружающего пространства. Поскольку при молниевых разрядах в высоковольтных линиях электропередач могут возникать кратковременные импульсы в десятки киловольт, в электросеть добавляют электронные средства защиты.

Тем временем изобретатели продолжают искать новые способы спасения от попадания молний зданий и сооружений. Недавно ведущий инженер Московского института теплотехники Борис Игнатов запатентовал "универсальный молниеотвод" для защиты от линейных и шаровых молний. По теории Игнатова, поскольку ядро шаровой молнии является мощным магнитным диполем, при установке в зоне обычного громоотвода постоянного магнита, шаровая молния должна обязательно притянуться к этому магниту. Важно обеспечить надежный сток электрического заряда на землю.

Принципиально новый способ борьбы с молниями предлагает калифорнийская компания BoltBlocker. По замыслу, громоотвод будет состоять из бьющей ввысь во время грозы водяной струи, диметр которой составит 1 см, а максимальная высота до 300 м. Подобными громоотводами компания планирует оснастить спортивные и детские площадки наиболее "молниеопасных" районов США.

Если же молния застала человека на открытом пространстве, то не стоит паниковать и попытаться найти реальное убежище. Таким убежищем может послужить лес. Не рекомендуется прятаться возле одиноких деревьев, поскольку возможно короткое замыкание между деревом и человеком (сопротивление человека около 500 Ом – меньше, чем у дерева). Нельзя во время грозы плавать в воде, поскольку вода является хорошим проводником электричества. Признаком того, что вы находитесь в электрическом поле, могут послужить вставшие дыбом волосы, которые начнут издавать легкое потрескивание. Но это только сухие волосы. Если поблизости нет убежища, для уменьшения опасности во время грозы лучше сесть на корточки в наиболее низком месте и переждать ненастье. Если гроза успешно миновала, можно продолжить занятие своим делом. Если же молния вас задела, но вы еще в состоянии думать, следует как можно скорее обратиться к врачу. Медики полагают, что человек, выживший после удара молнии (а таких людей немало), даже не получив сильных ожогов головы и тела, впоследствии может получить осложнения в виде отклонений в сердечно-сосудистой и невралгической деятельности от нормы. Впрочем, может и обойтись.

Реферат >> Физика

Которое вызывает полный разряд . Полный разряд - электрический разряд , полностью шунтирующий... полях во внешней изоляции возможен коронный разряд у электродов с малым радиусом... позволяют ограничить возможность возникновения короны , а также несколько увеличить...

  • Экспериментальное исследование параметров плазы емкостного высокочастотного разряда (ЕВЧР)

    Дипломная работа >> Физика

    Имеет место газовый разряд . Разряд при низких давлениях воздуха... электродами . 1.2 Тлеющий разряд Тлеющий разряд – это самоподдерживающийся разряд с холодным катодом, ... – земля сильно неоднородное и подобно коронному разряду , который виден лишь у острия...

  • Электрический ток в неметаллах (2)

    Реферат >> Физика

    ... разряд 9 2.4. Различные типы газовых разрядов 11 2.4.1. Искровой разряд 11 2.4.2. Дуговой разряд 13 2.4.3. Тлеющий разряд 14 2.4.4. Коронный разряд ... между электродами коронный разряд переходит в искровой. При повышенном напряжении коронный разряд на острие...

  • Материал из Википедии - свободной энциклопедии

    Коро́нный разря́д - это самостоятельный газовый разряд , возникающий в резко неоднородных полях у электродов с большой кривизной поверхности (острия, тонкие провода). Зона вблизи такого электрода характеризуется значительно более высокими значениями напряженности поля по сравнению со средними значениями для всего промежутка. Когда напряжённость поля достигает предельного значения (для воздуха около 30 кВ/см), вокруг электрода возникает свечение, имеющее вид короны . При коронном разряде ионизационные процессы происходят только вблизи коронирующего электрода. Коронный разряд возникает при сравнительно высоком давлении воздуха (порядка атмосферного).

    В природных условиях коронный разряд может возникать на верхушках деревьев, мачтах - так называемые огни святого Эльма .

    Механизм коронного разряда

    Электрон , возникший при случайной ионизации нейтральной молекулы, ускоряется в электрическом поле и приобретает энергию, достаточную для того, чтобы при столкновении со следующей молекулой ионизовать её. В результате происходит лавинное увеличение числа заряженных частиц.

    катодом , такую корону называют отрицательной. В отрицательной короне ионизационные лавины направлены от острия. Воспроизведение свободных электронов обеспечивается здесь за счёт термоэмиссии из коронирующего электрода. На некотором удалении от острия, там где электрическое поле является недостаточным, чтобы обеспечивать лавинную ионизацию, электроны рекомбинируют с нейтральными молекулами, образуя отрицательные ионы, которые и являются носителями тока во внешней области.

    Если коронирующее остриё является анодом , такую корону называют положительной. В положительной короне электроны притягиваются к острию, а ионы отталкиваются от него. Воспроизведение электронов, запускающих ионизационную лавину, обеспечивают вторичные фотопроцессы в газе вблизи от острия. Вдали от коронирующего электрода электрическое поле является недостаточным, чтобы обеспечивать лавинную ионизацию. Носителями тока в этой области являются положительные ионы, движущиеся от острия к отрицательному электроду. В отличие от ровного свечения отрицательной короны, в положительной короне иногда наблюдаются разбегающиеся от острия стримеры , которые при увеличении напряжения превращаются в искровые каналы.

    Применение

    Коронный разряд применяется для очистки газов от пыли и сопутствующих загрязнений (электростатический фильтр), для диагностики состояния конструкций (позволяет обнаруживать трещины в изделиях).

    Коронный разряд применяется в копировальных аппаратах (ксероксах) и лазерных принтерах для заряда светочувствительного барабана, переноса порошка с барабана на бумагу и для снятия остаточного заряда с барабана.

    Коронный разряд применяется для определения давления внутри лампы накаливания. Величина разряда зависит от острия и давления газа вокруг него. Острие у всех ламп одного типа - это нить накала. Значит, коронный разряд будет зависеть только от давления. А значит, о давлении газа в лампе можно судить по величине коронного разряда.

    Коронный разряд на проводах ЛЭП

    Коронный разряд на проводах линий электропередачи вызывает значительные потери передаваемой энергии . С целью сокращения потерь на общую корону применяется расщепление проводов ЛЭП на несколько составляющих, в зависимости от номинального напряжения линии.

    «Системный» способ уменьшения потерь мощности на корону заключается в том, что в зависимости от влажности и температуры воздуха диспетчер уменьшает напряжение в линии до определенной величины. В связи с этим задаются наименьшие допустимые сечения по короне:

    • 110 кВ - 70 мм² (сейчас рекомендуется использовать сечение 95 мм²).
    • 150 кВ - 120 мм².
    • 220 кВ - 240 мм².

    См. также

    Напишите отзыв о статье "Коронный разряд"

    Литература

    • Райзер Ю. П. Физика газового разряда. - 2-е изд. - М .: Наука, 1992. - 536 с. - ISBN 5-02014615-3 .

    Отрывок, характеризующий Коронный разряд

    На дворе еще было совсем темно. Дождик прошел, но капли еще падали с деревьев. Вблизи от караулки виднелись черные фигуры казачьих шалашей и связанных вместе лошадей. За избушкой чернелись две фуры, у которых стояли лошади, и в овраге краснелся догоравший огонь. Казаки и гусары не все спали: кое где слышались, вместе с звуком падающих капель и близкого звука жевания лошадей, негромкие, как бы шепчущиеся голоса.
    Петя вышел из сеней, огляделся в темноте и подошел к фурам. Под фурами храпел кто то, и вокруг них стояли, жуя овес, оседланные лошади. В темноте Петя узнал свою лошадь, которую он называл Карабахом, хотя она была малороссийская лошадь, и подошел к ней.
    – Ну, Карабах, завтра послужим, – сказал он, нюхая ее ноздри и целуя ее.
    – Что, барин, не спите? – сказал казак, сидевший под фурой.
    – Нет; а… Лихачев, кажется, тебя звать? Ведь я сейчас только приехал. Мы ездили к французам. – И Петя подробно рассказал казаку не только свою поездку, но и то, почему он ездил и почему он считает, что лучше рисковать своей жизнью, чем делать наобум Лазаря.
    – Что же, соснули бы, – сказал казак.
    – Нет, я привык, – отвечал Петя. – А что, у вас кремни в пистолетах не обились? Я привез с собою. Не нужно ли? Ты возьми.
    Казак высунулся из под фуры, чтобы поближе рассмотреть Петю.
    – Оттого, что я привык все делать аккуратно, – сказал Петя. – Иные так, кое как, не приготовятся, потом и жалеют. Я так не люблю.
    – Это точно, – сказал казак.
    – Да еще вот что, пожалуйста, голубчик, наточи мне саблю; затупи… (но Петя боялся солгать) она никогда отточена не была. Можно это сделать?
    – Отчего ж, можно.
    Лихачев встал, порылся в вьюках, и Петя скоро услыхал воинственный звук стали о брусок. Он влез на фуру и сел на край ее. Казак под фурой точил саблю.
    – А что же, спят молодцы? – сказал Петя.
    – Кто спит, а кто так вот.
    – Ну, а мальчик что?
    – Весенний то? Он там, в сенцах, завалился. Со страху спится. Уж рад то был.
    Долго после этого Петя молчал, прислушиваясь к звукам. В темноте послышались шаги и показалась черная фигура.
    – Что точишь? – спросил человек, подходя к фуре.
    – А вот барину наточить саблю.
    – Хорошее дело, – сказал человек, который показался Пете гусаром. – У вас, что ли, чашка осталась?
    – А вон у колеса.
    Гусар взял чашку.
    – Небось скоро свет, – проговорил он, зевая, и прошел куда то.
    Петя должен бы был знать, что он в лесу, в партии Денисова, в версте от дороги, что он сидит на фуре, отбитой у французов, около которой привязаны лошади, что под ним сидит казак Лихачев и натачивает ему саблю, что большое черное пятно направо – караулка, и красное яркое пятно внизу налево – догоравший костер, что человек, приходивший за чашкой, – гусар, который хотел пить; но он ничего не знал и не хотел знать этого. Он был в волшебном царстве, в котором ничего не было похожего на действительность. Большое черное пятно, может быть, точно была караулка, а может быть, была пещера, которая вела в самую глубь земли. Красное пятно, может быть, был огонь, а может быть – глаз огромного чудовища. Может быть, он точно сидит теперь на фуре, а очень может быть, что он сидит не на фуре, а на страшно высокой башне, с которой ежели упасть, то лететь бы до земли целый день, целый месяц – все лететь и никогда не долетишь. Может быть, что под фурой сидит просто казак Лихачев, а очень может быть, что это – самый добрый, храбрый, самый чудесный, самый превосходный человек на свете, которого никто не знает. Может быть, это точно проходил гусар за водой и пошел в лощину, а может быть, он только что исчез из виду и совсем исчез, и его не было.
    Что бы ни увидал теперь Петя, ничто бы не удивило его. Он был в волшебном царстве, в котором все было возможно.
    Он поглядел на небо. И небо было такое же волшебное, как и земля. На небе расчищало, и над вершинами дерев быстро бежали облака, как будто открывая звезды. Иногда казалось, что на небе расчищало и показывалось черное, чистое небо. Иногда казалось, что эти черные пятна были тучки. Иногда казалось, что небо высоко, высоко поднимается над головой; иногда небо спускалось совсем, так что рукой можно было достать его.
    Петя стал закрывать глаза и покачиваться.
    Капли капали. Шел тихий говор. Лошади заржали и подрались. Храпел кто то.
    – Ожиг, жиг, ожиг, жиг… – свистела натачиваемая сабля. И вдруг Петя услыхал стройный хор музыки, игравшей какой то неизвестный, торжественно сладкий гимн. Петя был музыкален, так же как Наташа, и больше Николая, но он никогда не учился музыке, не думал о музыке, и потому мотивы, неожиданно приходившие ему в голову, были для него особенно новы и привлекательны. Музыка играла все слышнее и слышнее. Напев разрастался, переходил из одного инструмента в другой. Происходило то, что называется фугой, хотя Петя не имел ни малейшего понятия о том, что такое фуга. Каждый инструмент, то похожий на скрипку, то на трубы – но лучше и чище, чем скрипки и трубы, – каждый инструмент играл свое и, не доиграв еще мотива, сливался с другим, начинавшим почти то же, и с третьим, и с четвертым, и все они сливались в одно и опять разбегались, и опять сливались то в торжественно церковное, то в ярко блестящее и победное.

    © 2024 yanaorgo.ru - Сайт о массаже. В здоровом теле, здоровый дух